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Abstract
In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are
non-Euclidean in nature. Geometric deep learning corresponds to techniques that
generalize deep neural network models to such non-Euclidean spaces. Several
recent papers have shown how convolutional neural networks (CNNs) can be
extended to learn with graph-based data. In this work, we study the setting where
the data (or measurements) are ordered, longitudinal or temporal in nature and live
on a Riemannian manifold – this setting is common in a variety of problems in
statistical machine learning, vision and medical imaging. We show how recurrent
statistical network models can be defined in such spaces. Then, we present an
efficient algorithm and conduct a rigorous analysis of its statistical properties.
We perform numerical experiments demonstrating competitive performance with
state of the art methods but with significantly fewer parameters. We also show
applications to a statistical analysis task in brain imaging, a regime where deep
neural network models have only been utilized in limited ways.

1 Introduction
In the last decade or so, deep neural network models have been very successful in learning compli-
cated patterns from data such as images, videos and speech [41, 39] – this has led to a number of
breakthroughs as well as deployments in turnkey applications. A popular neural network architecture
that has contributed to these advancements is convolutional neural networks (CNNs). In the classical
definition of convolution, one often assumes that the data correspond to discrete measurements,
acquired at equally spaced intervals (i.e., Euclidean space), of a scalar (or vector) valued function.
Clearly, for images, the Euclidean lattice grid assumption makes sense and the use of convolutional
architectures is appropriate – as described in [11], a number of properties such as stationarity, locality
and compositionality follow. While the assumption that the underlying data satisfies the Euclidean
structure is explicit or implicit in an overwhelming majority of models, recently there has been a
growing interest in applying or extending deep learning models for non-Euclidean data. This line of
work is called Geometric deep learning and typically deals with data such as manifolds and graphs
[11]. Existing results describe strategies for leveraging the mathematical properties of such geometric
or structured data, specifically, lack of (a) global linear structure, (b) global coordinate system,
(c) shift invariance/equivariance, by incorporating these ideas explicitly into deep networks used to
model them [13, 37, 18, 31, 30, 19].
Separate from the evolving body of work at the interface of convolutional neural networks and
structured data, there is a mature literature in statistical machine learning [40] and computer vision
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demonstrating how exploiting the structure (or geometry) of the data can yield advantages. Structured
data abound in various data analysis tasks: directional data in measurements from antennas [44],
time series data (curves) in finance [60] and health sciences [20], surface normal vectors on the
unit sphere (in vision or graphics) [58], probability density functions (in functional data analysis)
[56], covariance matrices (for use in conditional independences, image textures) [62], rigid motions
(registration) [48], shape representations (shape space analysis) [34], tree-based data (parse trees
in natural language processing) [51], subspaces (videos, segmentation) [65, 23], low-rank matrices
[12, 63], and kernel matrices [53] are common examples. In neuroimaging, an image may have a
structured measurement at each voxel to describe water diffusion [7, 64, 42, 32, 4, 15, 35] or local
structural change [29, 68, 36]. And the study of the interface between geometry/structure and analysis
methods has given effective practical tools because in order to define loss functions that make sense
for the data at hand, one needs to first define a metric which is intrinsic to the structure of the data.
The foregoing discussion, for the most part, covers differential geometry inspired algorithms for
non-sequential (or non-temporal) data. The study of analogous schemes for temporal or longitudinal
data is less well-developed. But analysis of dynamical scenes and stochastic processes is an important
area of machine learning and vision, and it is here that some results have shown the benefits of
explicitly using geometric ideas. Some of the examples include the modeling of temporal evolution of
features in dynamic scenes in action recognition [2, 9, 61], tractography [14, 50] and so on. There are
also proposals describing modeling stochastic linear dynamical system (LDS) [22, 2, 9, 61]. In [2, 3],
authors studied the Riemannian geometry of LDS to define distances and first order statistics. Given
that the marriage between deep learning and learning on non-Euclidean domains is a fairly recent,
the existing body of work primarily deals with attempts to generalize the popular CNN architectures.
Few results exist that study recurrent models for non-Euclidean structured domains.
The broad success of Recurrent Neural Network (RNN) architectures including Long short term
memory (LSTM) [28] and Gated recurrent unit (GRU) [17] in sequential modeling like Natural
Language Processing (NLP) has motivated a number of attempts to apply such ideas to model
stochastic processes or to characterize dynamical scenes which can be viewed as a sequence of
images. Several works have proposed variants of RNN to model dynamical scenes including
[57, 21, 46, 54, 66]. In the recent past, developments have been made to reduce the number of
parameters in RNN and making RNN faster [38, 66]. In [6, 27], authors proposed an efficient way to
handle vanishing and exploding gradient problem of RNN using unitary weight matrices. In [33],
authors proposed a RNN model which combines the remembering ability of unitary RNNs with the
ability of gated RNNs to effectively forget redundant/ irrelevant information. Despite these results, we
find that no existing model describes a recurrent model for structured (specifically, manifold-valued)
data. The main contribution of this paper is to describe a recurrent model (and accompanying
theoretical analysis) that will fall under the umbrella of “geometric deep learning” — it exploits the
geometry of non-Euclidean data but is specifically designed for temporal or ordered measurements.

2 Preliminaries: Key Ingredients from Riemannian geometry
In this section, we will first give a brief overview of the Riemannian geometry of n× n symmetric
positive definite matrices (henceforth will be denoted by SPD(n)). Note that our development is not
limited to SPD(n), but choosing a specific manifold simplifies the presentation and the notations
significantly. Then, we will present key ingredients needed for our proposed recurrent model.
Differential Geometry of SPD(n): Let SPD(n) be the set of n × n symmetric positive definite
matrices. The group of n×n full rank matrices, denoted by GL(n) and called the general linear group,
acts on SPD(n) via the group action, g.A := gAgT , where g ∈ GL(n) and A ∈ SPD(n). One can
define a GL(n) invariant intrinsic metric, dGL on SPD(n) as dGL(A,B) =

√
trace(Log(A−1B)2),

see [26]. Here, Log is the matrix logarithm. This metric is intrinsic but requires a spectral decomposi-
tion for calculations, a computationally intensive task for large matrices. In [16], the Jensen-Bregman
LogDet (JBLD) divergence was introduced on SPD(n). As the name suggests, this is not a metric
but as proved in [55], the square root of JBLD turns out to be a metric (called the Stein metric), which

is defined as d(A,B) =
√

log det(A+B
2 )− 1

2 log det(AB).
Here, we used the notation d without any subscript to denote the Stein metric. It is easy to see that
the Stein metric is computationally much more efficient than the GL(n)-invariant natural metric on
SPD(n) as no eigen decomposition is required. This will be useful for training our recurrent model.
In the remainder of the paper, we will assume the metric on SPD(n) to be the Stein metric. Now, we
describe a few operations on SPD(n) which are needed to define the recurrent model.
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“Translation” operation on SPD(n): Let I be the set of all isometries on SPD(n), i.e., given
g ∈ I , d(g.A, g.B) = d(A,B), for all A,B ∈ SPD(n), where . is the group action as defined
earlier. It is clear that I forms a group (henceforth, will be denoted by G) and for a given g ∈ G and
A ∈ SPD(n), g.A 7→ B, for some B ∈ SPD(n) is a group action. One can easily see that, endowed
with the Stein metric, G = GL(n). In this work, we will choose a subgroup of GL(n), i.e., O(n) as
our choice of G, where, O(n) is the set of n× n orthogonal matrices and g.A := gAgT . Since the
O(n) group operation preserves the distance, we call this group operation “translation”, analogous to
the case of Euclidean space and is denoted by TA(g) := gAgT .
Parametrization of SPD(n): Let A ∈ SPD(n). We will obtain the Cholesky factorization of
A = LLT , where L is an invertible lower traingular matrix. This gives a unique parametrization of
SPD(n). Let the parametrization be A = Chol((l1, l2, · · · ln, · · · , ln(n+1)/2)t). With a slight abuse
of notation, we will use Chol to denote both decomposition and construction based on the type of the
domain of the function, i.e., Chol(A) := L and Chol(L) := LLT = A. Note that here l1, l2, · · · , ln
are diagonal entries of L and are positive and ln+1, · · · , ln(n+1)/2 can be any real numbers.
Parametrization of O(n): O(n) is a Lie group [25] of n × n orthogonal matrices (of dimension
n(n−1)/2) with the corresponding Lie algebra, O(n), and consists of the set of n×n skew-symmetric
matrices. The Lie algebra is a vector space, so we will use the corresponding element from the Lie
algebra to parametrize a point on O(n). Let g ∈ O(n), we will use the matrix logarithm of g = log(g)
to get the parametrization as the skew-symmetric matrix. So, g = exp((g1, g2, · · · , gn(n−1)/2)t).
exp is the matrix exponential operator.
Weighted Fréchet mean (wFM) of matrices on SPD(n): Given {Xi}Ni=1 ⊂ SPD(n), and {wi}Ni=1
with wi ≥ 0, for all i and

∑
i wi = 1, the weighted Fréchet mean (wFM) [24] is:

M∗ = argmin
M

N∑
i=1

wid
2 (Xi,M) (1)

The existence and uniqueness of the Fréchet mean (FM) is discussed in detail in [1]. In this paper,
we will assume that the samples lie within a geodesic ball of an appropriate radius so that FM exists
and is unique. We will use FM({Xi} , {wi}) to denote the wFM of {Xi} with weights {wi}. With
the above tools in hand, now we are ready to formulate the Statistical Recurrent Neural Network on
SPD(n), dubbed as SPD-SRU.

3 A Statistical Recurrent Network Model in the space of SPD(n) matrices
The main motivation for our work comes from the statistical recurrent unit (SRU) model on Euclidean
spaces in [47]. To setup our formulation, we will briefly review the SRU formulation followed by
details of our recurrent model for manifold valued measurements.
What is the Statistical Recurrent Unit (SRU)? The authors in [47] propose an interesting model
for sequential (or temporal) data based on an un-gated recurrent unit (called Statistical Recurrent
Unit (SRU)). The model maintains the sequential dependency in the input samples through a simple
summary statistic — the so-called exponential moving average. Even though the proposal is based
on an un-gated architecture, the development and experiments show that the results from SRU are
competitive with more complex alternatives like LSTM and GRU. One reason put forth in that work is
that using appropriately designed summary statistics, one can essentially emulate complicated gated
units and still capture long terms relations (or memory) in sequences. This property is particularly
attractive when we study recurrent models for more complicated measurements such as manifolds.
Recall that the key challenge in extending statistical machine learning models to manifolds involves
re-deriving many of the classical (Euclidean) arithmetic and geometric operations while respecting
the geometry of the manifold of interest. The simplicity of un-gated units provides an excellent
starting point. Below, we describe the key update equations that define the SRU.
Let x1,x2, · · ·xT be an input sequence on Rn, presented to the model. As in most recurrent models,
the training process in SRU proceeds by updating the weights of the model. Let the weight matrix
be denoted by W (the node is indexed by the superscript). The update rules for SRU are as follows:

rt = ReLU
(
W (r)µt−1 + b(r)

)
(2)

ϕt = ReLU
(
W (φ)rt +W (x)xt + b(φ)

)
(3)

∀α ∈ J , µ
(α)
t = αµ

(α)
t−1 + (1− α)ϕt (4)

ot = ReLU
(
W (o)µt + b(o)

)
(5)

where J is the set of different scales. The SRU formulation is analogous to mean map embedding
(MME) but applied to non i.i.d. samples. Since the average of a set of i.i.d. samples will essentially
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marginalize over time, simple averaging will lose the temporal/sequential information. On the other
hand, the SRU computes a moving average over time which captures the average of the data seen so
far, i.e., when computing µ from ϕ (as shown in Fig. 1). This is very similar to taking the average
of stochastic processes and looking at the “average process”. Further, by looking at averages over
different scales, essentially, we can uncover statistics computed over different time scales. This is
because µ is not only a function of φ but also a function of {xi}t−1i=1 via rt. This dependence on the
past “tokens” in the sequence is shown in Fig. 1 by a “dashed” line. With this description, we can
easily list the key operational components in the update rules in (2)-(5) and then evaluate if such
components can be generalized to serve as the building blocks of our proposed model.
Which low-level operations are needed? We can verify that the key ingredients to define the model
in SRU are (i) weighted sum; (ii) addition of bias; (iii) moving average and (iv) non-linearity. In
principle, if we can generalize each of these operations to the SPD(n) manifold, it will provide us
the basic components to define the model. Observe that items (i) and (iii) are essentially a weighted
sum if we impose a convexity constraint on the weights. Then, the weighted sum for the Euclidean
setting can be generalized using wFM as defined in Section 2 (denoted by FM).

Rt Yt

Xt

Tt �t

Mt St Ot

rt

't

ot
µtxt

Figure 1: Sketch of an SPD-SRU and SRU
layer (dashed line represnets dependence on
the previous time point).

If we can do so, it will also provide a way to compute mov-
ing averages on SPD(n). Now, the second operation we can
identify above is the translation on Euclidean spaces. This
can be achieved by the “translation” operation on SPD(n)
as defined in Section 2 (denoted by T). Finally, in order
to generalize ReLU on SPD(n), we will use the standard
ReLU on the parameter space (this will be the local chart
of SPD(n)) and then map it back on to the manifold. This
means that we have generalized each of the key components.
With this in hand, we are ready to present our proposed
recurrent model on SPD(n). We first formally describe our
SPD-SRU layer and then contrast with the SRU layer, to help see the main differences.
Basic components of the SPD-SRU model. Let, X1, X2, · · ·XT be an input temporal or ordered
sequence of points on SPD(n). The update rules for a layer of SPD-SRU is as follows:

Yt = FM
({
M

(α)
t−1

}
,
{
w(y,α)

})
, Rt = T

(
Yt, g

(r)
)

(6)

Tt = FM
(
{Rt, Xt} , w(t)

)
, Φt = T

(
Tt, g

(p)
)

(7)

∀α ∈ J , M
(α)
t = FM

({
M

(α)
t−1,Φt

}
, α
)

(8)

St = FM
({
M

(α)
t

}
,
{
w(s,α)

})
, Ot = Chol

(
ReLU

(
Chol

(
T
(
St, g

(y)
))))

(9)

where, t ∈ {1, · · · , T} and M (α)
0 is initialized to be a diagonal n × n matrix with small positive

values. Similar to before, the set J consists of positive real numbers from the unit interval. Now,
computing the FM at the different elements of J will give a wFM at different “scales”, exactly as
desired. Analogous to the SRU, here M (α)

t s are computed by averaging Φt at different scales as
shown in Fig. 1. This model leverages the context based on previous data by asking the moving
averages, M (α)

t to depend on past data, {Xi}t−1
i=1 through Rt (as shown in Fig. 1).

Comparison between the SPD-SRU and the SRU layer: In the SPD-SRU unit above, each update
identity is a generalization of an update equation of SRU. In (6), we compute the weighted combi-
nation of the previous FMs (computed using different “scales”) with a “translation”, i.e., the input
is

{
M

(α)
t−1

}
and the output is Rt. This update equation is analogous to the weighted combination of

the past means with bias as given in (2)) where the input is
{
µ

(α)
t−1

}
and the output is rt. This update

rule calculates a weighted combination of the past information. In (7), we compute a weighted
combination of the previous information, Rt and the current point or token, Xt with a “translation”.
The input of this equation is Rt and Xt and the output is Φt. This is analogous to (3), where the input
is rt and xt and the output is ϕt. This update rule combines old and new information. Now, we will
update the new information based on the combined information at the current time step, i.e., Φt. This
is accomplished in (8). Here, we are computing an FM (average) at different “scales”. Computing
averages at different “scales” essentially allows including information from previous data points
which have been seen at various time scales. This step is a generalization of (4). In this step, the
input is

{
M

(α)
t

}
and Φt (with

{
µ

(α)
t−1

}
and ϕt respectively) and the output is

{
M

(α)
t

}
(with

{
µ

(α)
t

}
).
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This step is the combined information gathered at the current time step. Finally, in (9), we used a
weighted combination of the current FMs (averages) and outputs Ot. This is the last update rule in
SRU, i.e., (5). Observe that we did not use the ReLU operation in each update rule of SPD-SRU, in
contrast to SRU. This is because, these update rules are highly nonlinear unlike in the SRU, hence, a
ReLU unit at the final output of the layer is sufficient. Also, notice that Ot ∈ SPD(n), hence, we
can cascade multiple SPD-SRU layers, in other words in the next layer, the input sequence will be
O1, O2 · · ·OT . The update equations track the “averages” (FM) at varying scales. This is the reason
we can call our framework statistical recurrent network. We will shortly see that our framework can
utilize parameters more efficiently and requires very few parameters because of the ability to use the
covariance structure.
Important properties of SPD-SRU model: The “translation” operator T is analogous to “adding”
a bias term in a standard neural network. One reason we call it “translation” is because the action of
O(n), preserves the metric. Notice that although in this description, we track the FMs at different
scales, one may easily use other statistics, e.g., Fréchet median and mode, etc. The key bottleneck
is to efficiently compute the moving statistic (whatever it may be), which will be discussed shortly.
Note that the SPD-SRU formulation can be generalized to other manifolds. In fact, it can be easily
generalized to Riemannian homogeneous spaces [26] because of two reasons (a) closed form
expressions for Riemannian exponential and inverse exponential maps exist and (b) a group G acts
transitively on these spaces, hence we can generalize the definition of “translation”. Other manifolds
are also possible but the technical details will be different. Now, we will comment on learning the
parameters of our proposed model.
Learning the parameters: Notice that using the parametrization of O(n), we will learn the “bias”
term on the parametric space, which is a vector space. The weights in the wFM must satisfy the
non-negativity constraint. In order to ensure that this property is satisfied, we will learn the square root
of the weights which is unconstrained, i.e., the entire real line. We will impose the affine constraint
explicitly by normalizing the weights. Hence, all the trainable parameters lie in the Euclidean space
and the optimization of these parameters is unconstrained, hence standard techniques are sufficient.
Remarks. It is interesting to observe that the update equations in (6)-(9) involve group operations
and wFM computation. But as evident from the (1), the wFM computation requires numerical
optimization, which is computationally not efficient. This is a bottleneck. For example, for our
proposed model, on a batch size of 20 with 15 × 15 matrices with T = 50, we need to compute
FM 3000 times, even for just 10 epochs. Next, we will develop a formulation to make this wFM
computation faster since it is invoked hundreds of times in a typical training procedure.

4 An efficient way to compute the wFM on SPD(n)
The foregoing discussion describes how the computation of wFM needs an optimization on the SPD
manifold. If this sub-module is slow, the demands of the overall runtime will rule out practical
adoption. In contrast, if this sub-module is fast but numerically or statistically unstable, the errors
will propagate in unpredictable ways, and can adversely affect the parameter estimation. Thus, we
need a scheme that balances performance and efficiency.
Estimation of the FM from samples is a well researched topic. For instance, the authors in [45, 49]
used Riemannian gradient descent to compute the FM. But the algorithm has a runtime complexity of
O(iN), where N is the number of samples and i is the number of iterations for convergence. This
procedure comes with provable consistency guarantees – thus, while it will serve our goals in theory,
we find that the runtime for each run makes training incredibly slow. On the other hand, the O(N)
recursive FM estimator using the Stein metric presented in [52] is fast and apt for this task if no
additional assumptions are made. However, it comes with no theoretical guarantees of consistency.
Key Observation. We found that with a few important changes to the idea described in [52], one
can derive an FM estimator that retains the attractive efficiency behavior and is provably consistent.
The key ingredient here involves using a novel isometric mapping from the SPD manifold to the unit
Hilbert sphere. Next, we present the main idea followed by the analysis.
Proposed Idea. Let {Xi}Ni=1 ⊂ SPD(n) for which we want to compute the FM which will be used
in (6)–(9). Authors in [52] presented a recursive Stein mean estimator given below:

M1 = X1 Mk = Mk−1

[√
Tk +

(2wk − 1)2

4
(I − Tk)

2 − 2wk − 1

2
(I − Tk)

]
, (10)

where Tk = M−1k−1Xk and {wi} is the set of weights. Instead, briefly, our strategy is (i) use an
isometric mapping from SPD(n) to the unit Hilbert sphere; (ii) make use of an efficient way to
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compute the FM on the unit Hilbert sphere; This isometric mapping to the Hilbert sphere then
transfers the problem of proving consistency of the estimator from SPD(n) to that on the Hilbert
sphere, which is easier to prove as shown below. This then leads to consistency of FM estimator on
SPD(n).
We define the isometric mapping from SPD(n) with a Stein metric to S∞, i.e., the infinite dimensional
unit hypersphere. In order to define it, notice that we need to define a metric, dS on S∞ such that,
(SPD(n), d) and (S∞, dS) are isometric. This procedure and the associated consistency analysis is
described below (all proofs are in the supplement).
Definition 1. LetA ∈ SPD(n). Let f := G(A) be the Gaussian density with 0 mean and covariance
matrix A. Now, we normalize the density f by f 7→ f/‖f‖ to map it onto S∞. Let, Φ : SPD(n)→
S∞ be that mapping. We define the metric on S∞ as dS(f̃ , g̃) =

√
− log〈f̃ , g̃〉2.

Here, 〈, 〉 is the L2 inner product.The following proposition proves the isometry between SPD(n)
with the Stein metric and the hypersphere with the new metric. Let, A,B ∈ SPD(n). Then,

Proposition 1. Let f̃ = Φ(A) and g̃ = Φ(B). Then, d(2A, 2B) = dS(f̃ , g̃).
Note that, Φ maps a point on SPD(n) to the positive orthant of S∞, denoted by H since the
components of any probability vector are non-negative. We should point out that in this metric space,
there are no geodesics since it is not a length space. As a result, we cannot simply use the consistency
proof of the stochastic gradient descent based FM estimator presented in [10] for any Riemannian
manifold and apply it here. Hence, the recursive FM presented next for the identity in (10) with the
mapping described above will need a separate consistency analysis.
Recursive Fréchet mean algorithm on (H, dS). Let {xi}Ni=1 be the samples on (H, dS) whereH
gives the positive orthant of S∞. Then, the FM of the given samples, denoted by m∗, is defined as
m∗ = arg minm

∑N
i=1 d

2
S(xi,m). Our recursive algorithm to compute the wFM of {xi}Ni=1 is:

m1 = x1 mk = arg min
x

(
wk d

2(xk,x) + (1− wk) d2(mk−1,x)
)

(11)

where, mk is the kth estimate of the FM. At each step of our algorithm, we simply calculate a wFM
of two points and we chose the weights to be the Euclidean weights. So, in order to construct a
recursive algorithm, we need to have a closed form expression of the wFM, as stated next.

Proposition 2. The minimizer of (11) is given by mk = sin(θ−α)
sin(θ)

mk−1 + sin(α)
sin(θ)

xk, where θ =

arccos(〈mk−1,xk〉) and α = arctan

(
−1+
√

4c2(1−wk)−4c2(1−wk)2+1

2c(1−wk)

)
and c = tan(θ).

Consistency and Convergence analysis of the estimator. The following proposition (see supple-
ment for proof) gives us the weak consistency of this estimator and also the convergence rate.
Proposition 3. (a) Var (mk)→ 0 as k →∞. (b) The rate of convergence of the proposed recursive
FM estimator is super linear.
Due to proposition 1, we obtain a consistency result for (10) with our mapping. These results suggest
that we now have a suitable FM estimator which is consistent and efficient – this can be used as a
black-box module in our RNN formulation in (6)-(9).

5 Experiments
In this section, we demonstrate the application of SPD-SRU to answer three key questions (1) Using
the manifold constraint, what are we saving in terms of number of parameters/ time and is the
performance competitive? (2) When data is not manifold valued, can we use our framework with
the geometry constraint? (3) In a real application, what improvements can we get over the baseline?
We perform three sets of experiments to answer these questions namely: (a) classification of moving
patterns on Moving MNIST data, (b) classification of actions on UCF11 dataset and (c) permutation
testing to detect group differences between patients with and without Parkinson’s disease. In
the following subsections, we discuss about each of these dataset in more detail and present the
performance of our SPD-SRU. Our code is available from https://goo.gl/SfAezS.

5.1 Savings in terms of number of parameters/ time and experiments on vision datasets.
In this section, we perform two sets of experiments namely (1) classification of moving patterns
on Moving MNIST data, (2) classification of actions on UCF11 data to show the improvement
of our proposed framework over the state-of-the-art methods in terms of number of parameters/
time. We compared with LSTM [28], SRU [47], TT-GRU and TT-LSTM [66]. In the first two
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classification applications, we use a convolution block before the recurrent unit for all the competitive
methods except for TT-GRU and TT-LSTM. In our SPD-SRU model, before the recurrent layer, we
included a covariance block analogous to [67] after one convolution layer ([67] includes details of the
construction for the covariance block). So, the input of our SPD-SRU layer is a sequence of matrices
in SPD(c+ 1), where c is the number of channels from the convolution layer.
Classification of moving patterns in Moving MNIST data. We used the Moving MNIST data as
generated in [57]. For this experiment we performed 2 and 3 classes classification experiment. In
each class, we generated 1000 sequences each of length 20 showing 2 digits moving in a 64 × 64
frame. Though within a class, the digits are random, we fixed the moving pattern by fixing the speed
and direction of the movement. In this experiment, we kept the speed to be the same for all the
sequences, but two sequences from two different classes can differ in orientation by at least 5◦ and by
at most 30◦. We experimentally see that, SPD-SRU can achieve very good 10-fold testing accuracy
even when the orientation difference of two classes is 5◦. In fact SPD-SRU uses the smallest number
of parameters among all methods tested and still offers the best average testing accuracy.

time (s) orientation (◦)Mode # params. / epoch 30-60 10-15 10-15-20

SPD-SRU 1559 ∼ 6.2 1.00± 0.00 0.96± 0.02 0.94± 0.02
TT-GRU 2240 ∼ 2.0 1.00± 0.00 0.52± 0.04 0.47± 0.03

TT-LSTM 2304 ∼ 2.0 1.00± 0.00 0.51± 0.04 0.37± 0.02
SRU 159862 ∼ 3.5 1.00± 000 0.75± 0.19 0.73± 0.14

LSTM 252342 ∼ 4.5 0.97± 0.01 0.71± 0.07 0.57± 0.13

Table 1: Comparative results on Moving MNIST

In Table 1, we report the mean
and standard deviation of the 10-
fold testing accuracy. We should
point out that the training accu-
racy for all the competitive meth-
ods is > 95% for all cases. For
TT-RNN, we reshaped the input
to be 4× 8× 8× 16 and kept the
output shape and rank to be 4× 4× 4× 4 and 1× 4× 4× 4× 1. The number of output units for
LSTM is set to 10 and the number of statistics for SRU is set to 80. Note that, we chose different
parameters for SRU and LSTM and TT-RNN and the one we report here are those for which the
number of parameters are smallest for the reported testing accuracy. For the convolution layer, we
chose the kernel size to be 5× 5 and the input and output channels to be 5 and 10 respectively, i.e.,
the dimension of the SPD matrix is 11 for this experiment. As before, the parameters are chosen so
the number of parameters are smallest to get the reported testing accuracy.
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Figure 2: Comparison of testing ac-
curacies with varying orientations

One can see from the table that, SPD-SRU takes the least number
of parameters and can achieve very good classification accuracy
even for 5◦ orientation difference and for three classes. Note
that TT-RNN is the closest to SPD-SRU in terms of parameters.
For comparisons, we conduct an experiment where we vary the
difference of orientation from 30◦ to 5◦. The testing accuracies
are shown in Fig. 2. We can see that only SPD-SRU maintains
good 10-fold testing accuracy for all orientation differences while
the performance of TT-RNN (both variants) deteriorates as we
decrease the difference between orientations of the two classes
(the effect size). In terms of training time, SPD-SRU takes around
6 seconds per epoch while the fastest method is TT-RNN which
takes around 2 seconds. But, in this experiment, SPD-SRU takes 75 epochs to converge to the reported
results while TT-RNN takes around 400 epochs. So, although TT-RNN is faster per epoch, the total
training time for TT-RNN and SPD-SRU is almost the same. We also should point out that although
the number of trainable parameters are fewer for SPD-SRU than TT-RNN, the time difference is due
to constructing the covariance in each epoch which can be optimized via faster implementations.
Classification of moving patterns in UCF-11 data. We performed an action classification exper-
iment on UCF11 dataset [43]. It contains in total 1600 video clips belonging to 11 classes that
summarize the human action visible in each video clip such as basketball shooting, diving and others.
We followed the same processing step as in [66]. Each frame has resolution 320×240. We generate a
sequence of RGB frames of size 160× 120 from each clip at 24 fps. The lengths of frame sequences
from each video therefore are in the range of 204-1492 with an average of 483.7. For SPD-SRU, we
chose two convolution layers with kernel size 7 × 7 and number of output channels to be 5 and 7
respectively and then 5 PSRN layers. Hence, the dimension of the covariance matrices are 8× 8 for
this experiment. For TT-GRU and TT-LSTM, we used the same configurations of input and output
factorization as given in [66]. For SRU and LSTM we used the number of statistics and number
of output units to be 750. For both SRU and LSTM we used 3 convolution layers with kernel size
7 × 7 and output channels to be 10, 15 and 25 respectively to get the reported testing accuracies.
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All the models achieve > 90% training accuracy. We report the testing accuracy with the number
of parameters and time per epoch in Table 2. From this experiment, we can see that the number of
parameters for SPD-SRU is significantly smaller than the other models without sacrificing the testing
accuracy. In terms of training time, SPD-SRU takes approximately 3 times more time than TT-RNN
but SPD-SRU (TT-RNN) converges in 50 (100) epochs. Furthermore, we like to point out that after
400 epochs, SPD-SRU gives 79.90% testing accuracy. Hence, analogous to the previous experiment,
we can conclude that SPD-SRU maintains very good classification accuracy while keeping the number
of trainable parameters very small. Furthermore, this experiment indicates that SPD-SRU can achieve
competitive performance on real data with small number of training parameters in comparable time.

5.2 Application on manifold valued data
From the previous two experiments, we can conclude that SPD-SRU requires a smaller number of
parameters. Now, we focus our attention to a neuroimaging application where data is manifold valued.
Because the number of parameters are small, we can do statistical testing on brain connectivity at the
fiber bundle level. We seek to find group differences between subjects with and without Parkinson’s
disease (denoted by ‘PD’ and ‘CON’) based on the M1 fiber tracts on both hemispheres of the brain.

Model # params. time/ epoch Test acc.
SPD-SRU 3337 ∼ 76 0.78
TT-GRU 6048 ∼ 42 0.78

TT-LSTM 6176 ∼ 33 0.78
SRU 2535630 ∼ 50 0.75

LSTM 14626425 ∼ 57 0.70

Table 2: Comparative results on UCF11 data

Permutation testing to detect group differences. The
data pool consists of dMRI (human) brain scans acquired
from 50 ‘PD’ patients and 44 ‘CON’ healthy controls. All
images were collected using a 3.0T MR scanner (Philips
Achieva) and 32-channel quadrature volume head coil. The
parameters of the diffusion imaging acquisition sequence
were: gradient directions = 64, b-values = 0/1000 s/mm2,
repetition time =7748 ms, echo time = 86 ms, flip angle = 90◦, field of view = 224× 224 mm, matrix
size = 112× 112, number of contiguous axial slices = 60 and SENSE factor P = 2. We used FSL [8]
software to extract M1 fiber tracts (denoted by ‘LM1’ and ‘RM1’) [5], which consists of 33 and 34
points respectively (please see Fig. 3 for M1-SMATT fiber tract template). We fit a diffusion tensor
and extract 3× 3 SPD matrices. Now, for each of these two classes, we use 3 layers of SPD-SRU to
learn the tracts pattern to get two models for ‘PD’ and ‘CON’ (denoted by ‘mPD’ and ‘mCON’).

Figure 3: M1-SMATT tem-
plate

Now, we use a permutation testing based on a “distance” between ‘mPD’
and ‘mCON’. We will define the distance between two network models
as proposed in [59] (let it be denoted by dmod). Here, we assume each
subject is independent hence use of permutation testing is sensible. Then
we perform permutation testing for each tract as follows (i) randomly
permute the class labels of the subjects and learn ‘mPD’ and ‘mCON’
models for each of the new group. (ii) compute djmod (iii) repeat step (ii)
10,000 times and report the p-value as the fraction of times djmod > dmod.
So, we ask if we can reject the null hypothesis that there is no significant
difference between the tracts models learned from the two different classes.
As a baseline, we use the following scheme: (i) for each tract of each
subject, compute the FM of the matrices on the tract. (ii) use Cramer’s
test based on this Stein distance. (iii) do the permutation testing based on the Cramer’s test.
We found that using our SPD-SRU model with 3 layers, the p-value for ‘LM1’ and ‘RM1’ are 0.01 and
0.032 respectively, while the baseline method gives a p-value of 0.17 and 0.34 respectively. Hence,
we conclude that, unlike the baseline method, using SPD-SRU we can reject the null hypothesis with
95% confidence. To the best of our knowledge, this is the first result that demonstrates a RNN based
statistical significance test applied on tract based group testing in neuroimaging.

6 Conclusions
Non-Euclidean or manifold valued data are ubiquitous in science and engineering. In this work, we
study the setting where the data (or measurements) are ordered, longitudinal or temporal in nature
and live on a Riemannian manifold. This setting is common in a variety of problems in statistical
machine learning, vision and medical imaging. We presented a generalization of the RNN to such
non-Euclidean spaces and analyze its theoretical properties. Our proposed framework is fast and
needs far fewer parameters than the state-of-the-art. Experiments show competitive performance on
benchmark computer vision datasets in comparable time. We also apply our framework to perform
statistical analysis in brain connectivity and demonstrate the applicability to manifold valued data.
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Gated orthogonal recurrent units: On learning to forget. arXiv preprint arXiv:1706.02761, 2017.

[34] David G Kendall. Shape manifolds, procrustean metrics, and complex projective spaces. Bulletin of the
London Mathematical Society, 16(2):81–121, 1984.

[35] Hyunwoo J Kim, Nagesh Adluru, Maxwell D Collins, Moo K Chung, Barbara B Bendlin, Sterling C
Johnson, Richard J Davidson, and Vikas Singh. Multivariate general linear models (mglm) on riemannian
manifolds with applications to statistical analysis of diffusion weighted images. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 2705–2712, 2014.

[36] Hyunwoo J Kim, Nagesh Adluru, Heemanshu Suri, Baba C Vemuri, Sterling C Johnson, and Vikas Singh.
Riemannian nonlinear mixed effects models: Analyzing longitudinal deformations in neuroimaging. In
Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[37] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution in neural
networks to the action of compact groups. arXiv preprint arXiv:1802.03690, 2018.

[38] Jan Koutnik, Klaus Greff, Faustino Gomez, and Juergen Schmidhuber. A clockwork rnn. arXiv preprint
arXiv:1402.3511, 2014.

[39] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012.

[40] Guy Lebanon et al. Riemannian geometry and statistical machine learning. LAP LAMBERT Academic
Publishing, 2015.

[41] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

10



[42] C. Lenglet, M. Rousson, and R. Deriche. DTI segmentation by statistical surface evolution. IEEE Trans.
on Medical Imaging, 25(6):685–700, 2006.

[43] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos “in the wild”. In
Computer vision and pattern recognition, 2009. CVPR 2009. IEEE conference on, pages 1996–2003. IEEE,
2009.

[44] Konstantinos Mammasis and RobertW Stewart. Spherical statistics and spatial correlation for multielement
antenna systems. EURASIP Journal on Wireless Communications and Networking, 2010(1):307265, 2010.

[45] Maher Moakher and Philipp G Batchelor. Symmetric positive-definite matrices: From geometry to
applications and visualization. In Visualization and Processing of Tensor Fields, pages 285–298. Springer,
2006.

[46] Joe Yue-Hei Ng, Matthew Hausknecht, Sudheendra Vijayanarasimhan, Oriol Vinyals, Rajat Monga, and
George Toderici. Beyond short snippets: Deep networks for video classification. In Computer Vision and
Pattern Recognition (CVPR), 2015 IEEE Conference on, pages 4694–4702. IEEE, 2015.

[47] Junier B Oliva, Barnabás Póczos, and Jeff Schneider. The statistical recurrent unit. arXiv preprint
arXiv:1703.00381, 2017.

[48] FC Park and Bahram Ravani. Bezier curves on riemannian manifolds and lie groups with kinematics
applications. Journal of Mechanical Design, 117(1):36–40, 1995.

[49] Xavier Pennec, Pierre Fillard, and Nicholas Ayache. A riemannian framework for tensor computing.
International Journal of computer vision, 66(1):41–66, 2006.

[50] Sonia Pujol, William Wells, Carlo Pierpaoli, Caroline Brun, James Gee, Guang Cheng, Baba Vemuri,
Olivier Commowick, Sylvain Prima, Aymeric Stamm, et al. The DTI challenge: toward standardized
evaluation of diffusion tensor imaging tractography for neurosurgery. Journal of Neuroimaging, 25(6):875–
882, 2015.

[51] Chris Quirk, Arul Menezes, and Colin Cherry. Dependency treelet translation: Syntactically informed
phrasal smt. In Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics,
pages 271–279. Association for Computational Linguistics, 2005.

[52] Hesamoddin Salehian, Guang Cheng, Baba C Vemuri, and Jeffrey Ho. Recursive estimation of the stein
center of spd matrices and its applications. In Proceedings of the IEEE International Conference on
Computer Vision, pages 1793–1800, 2013.

[53] Bernhard Schölkopf and Alexander J Smola. Learning with kernels: support vector machines, regulariza-
tion, optimization, and beyond. MIT press, 2002.

[54] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Action recognition using visual attention. arXiv
preprint arXiv:1511.04119, 2015.

[55] Suvrit Sra. Positive definite matrices and the symmetric stein divergence. Technical report, 2011.

[56] Anuj Srivastava, Ian Jermyn, and Shantanu Joshi. Riemannian analysis of probability density functions
with applications in vision. In Computer Vision and Pattern Recognition, 2007. CVPR. IEEE Conference
on, pages 1–8. IEEE, 2007.

[57] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhudinov. Unsupervised learning of video representa-
tions using lstms. In International conference on machine learning, pages 843–852, 2015.

[58] Julian Straub, Jason Chang, Oren Freifeld, and John Fisher III. A dirichlet process mixture model for
spherical data. In Artificial Intelligence and Statistics, pages 930–938, 2015.

[59] Umberto Triacca. Measuring the distance between sets of arma models. Econometrics, 4(3):32, 2016.

[60] Ruey S Tsay. Analysis of financial time series, volume 543. John Wiley & Sons, 2005.

[61] Pavan Turaga, Ashok Veeraraghavan, and Rama Chellappa. Statistical analysis on stiefel and grassmann
manifolds with applications in computer vision. In Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[62] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast descriptor for detection and
classification. Computer Vision–ECCV 2006, pages 589–600, 2006.

11



[63] Bart Vandereycken. Low-rank matrix completion by riemannian optimization. SIAM Journal on Optimiza-
tion, 23(2):1214–1236, 2013.

[64] Zhizhou Wang and Baba C Vemuri. Dti segmentation using an information theoretic tensor dissimilarity
measure. IEEE Transactions on Medical Imaging, 24(10):1267–1277, 2005.

[65] Jia Xu, Vamsi K Ithapu, Lopamudra Mukherjee, James M Rehg, and Vikas Singh. Gosus: Grassmannian
online subspace updates with structured-sparsity. In Computer Vision (ICCV), 2013 IEEE International
Conference on, pages 3376–3383. IEEE, 2013.

[66] Yinchong Yang, Denis Krompass, and Volker Tresp. Tensor-train recurrent neural networks for video
classification. arXiv preprint arXiv:1707.01786, 2017.

[67] Kaicheng Yu and Mathieu Salzmann. Second-order convolutional neural networks. arXiv preprint
arXiv:1703.06817, 2017.

[68] Ernesto Zacur, Matias Bossa, and Salvador Olmos. Multivariate tensor-based morphometry with a right-
invariant riemannian distance on GL+ (n). Journal of mathematical imaging and vision, 50(1-2):18–31,
2014.

12


	Introduction
	Preliminaries: Key Ingredients from Riemannian geometry
	A Statistical Recurrent Network Model in the space of SPD(n) matrices
	An efficient way to compute the wFM on SPD(n)
	Experiments
	Savings in terms of number of parameters/ time and experiments on vision datasets.
	Application on manifold valued data

	Conclusions

