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Abstract

Efforts are underway to study ways via which the power
of deep neural networks can be extended to non-standard
data types such as structured data (e.g., graphs) or manifold-
valued data (e.g., unit vectors or special matrices). Often,
sizable empirical improvements are possible when the ge-
ometry of such data spaces are incorporated into the design
of the model, architecture, and the algorithms. Motivated
by neuroimaging applications, we study formulations where
the data are sequential manifold-valued measurements. This
case is common in brain imaging, where the samples corre-
spond to symmetric positive definite matrices or orientation
distribution functions. Instead of a recurrent model which
poses computational/technical issues, and inspired by recent
results showing the viability of dilated convolutional models
for sequence prediction, we develop a dilated convolutional
neural network architecture for this task. On the technical
side, we show how the modules needed in our network can
be derived while explicitly taking the Riemannian manifold
structure into account. We show how the operations needed
can leverage known results for calculating the weighted
Fréchet Mean (wFM). Finally, we present scientific results
for group difference analysis in Alzheimer’s disease (AD)
where the groups are derived using AD pathology load: here
the model finds several brain fiber bundles that are related
to AD even when the subjects are all still cognitively healthy.

1. Introduction
The classical definition of convolution assumes that the

data are scalar or vector-valued and lie on discrete equally
spaced intervals. This assumption is ideal for natural images
and central to how we use convolutional filters in deep neu-
ral networks but is far less appropriate for other domains
where the data are structured such as meshes, graphs or mea-
surements on a manifold. In computer vision and machine
learning, these problems that need deep learning models for
structured data are studied under the topic called geometric
deep learning [9], which has led to a number of elegant ap-
proaches including convolutional neural networks (CNN) on
non-Euclidean data [14, 33]. The reason this is important

is that mathematically, non-Euclidean data violates a num-
ber of key properties of Euclidean spaces such as a global
linear structure and coordinate system, as well as shift in-
variance/equivariance. As a result, the core operations we
use in classical statistics and machine learning as well as
within deep neural network architectures often need to be
tailored based on the geometry and specifics of the data at
hand. When such adjustments are made in modern deep
learning architectures, a number of authors have reported
sizable improvements in the performance of the learning
algorithms [11, 10, 34, 14, 27, 26, 15].

We should note that specializing learning methods to bet-
ter respect or exploit the structure (or geometry) of the data
are not a new development. Time series data are common
in finance [49], and as a result, has been analyzed using
specialized methods in statistics for decades. Surface normal
vectors on the unit sphere have been widely used in graphics
[48], and probability density functions, as well as covari-
ance matrices, are common in both machine learning and
computer vision [45, 16]. In neuroimaging, which is a key
focus of our paper, the structured measurement at a voxel of
an image may capture water diffusion [6, 53, 36, 31, 2, 13]
or local structural change [25, 59, 32]. The latter exam-
ple is commonly known as the Cauchy deformation tensor
(CDT) [32] and has been utilized to achieve improvements
over brain imaging methods such as tensor-based morphom-
etry [37, 43, 4]. When the mathematical properties of such
data are exploited, one often needs new loss functions and
specialized optimization schemes. This step often involves
first defining an intrinsic metric for the underlying geometry
(structure) of the data. It is important to note that within
geometric deep learning for manifolds, two types of settings
are often considered. The first case is where the data are
functions on a manifold. The second case corresponds to the
setting where data are sample points on a manifold, such as
a Riemannian manifold. In this paper, we study the second
setting, which is not covered in the form described here in
existing works including [9].

When the structure or geometry of the data informs the
formulation of the learning task (or algorithm), we obtain
differential geometry inspired algorithms where the role of
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the extrinsic or intrinsic metric induced by the data is ex-
plicit. Many datasets do not have a temporal or sequential
component associated with each sample. However, the anal-
ysis of temporal (or sequential) data is an important area
of machine learning and vision, e.g., within action recog-
nition [1, 7, 50] and video segmentation [20], the study of
analogous geometric ideas in this regime, especially within
deep learning, is limited. Specifically, there are few existing
proposals describing deep neural network models for struc-
tured (or manifold-valued) sequential data. Recently in [12],
the authors proposed a recurrent model for the manifold of
symmetric positive definite (SPD) matrices. This work is in-
teresting and replaces a number of blocks within a recurrent
model with the “statistical recurrent units”. But it is known
that training recurrent models is more involved than convolu-
tional architectures – shortly, our experiments will show that
a 2× speed-up (by using a convolutional instead of a recur-
rent model) can be achieved. While the current consensus,
within the community, is that sequential data should involve
a recurrent network [17], as noted by [5], emerging results
indicate that convolutional architectures often perform supe-
rior to recurrent networks on “sequential” applications such
as audio synthesis. In fact, even historically, convolutional
models were used for 1-D sequential data [22, 35]. Now,
given that most use-cases of learning sequential models on
manifold-valued data will not require the infinite memory
capabilities offered by a recurrent model, it seems natural
to investigate the extent to which convolutional models may
suffice. Notice that in order to get the long effective memory
from a CNN model, one needs to increase the depth and/or
increase the receptive field: this is provided by extensions
such as dilated convolutions. We find that the two key ingre-
dients in [5] to achieve similar or better performance than
a recurrent model for sequential tasks involves (a) using
dilations to increase the receptive field of each convolution
and (b) using residual connections to design a deeper but
stable network. It seems logical that these developments
should be an ideal starting point in designing models and
algorithms for sequential manifold-valued data – the goal
of this work. Our key contribution is the design of a Di-
lated CNN model for sequential manifold-valued data and
showing its applicability in performing statistical analysis of
brain images, specifically, diffusion-weighted MR images.
To do so, we (a) define dilation for the convolution operator
on the manifold of interest (b) define residual connections
for our architecture (c) define weight normalization/dropout
to add regularization/stability for the deeper network. We
show that this yields an efficient formulation for sequen-
tial manifold-valued data, where few exist in the literature
at this time. On the scientific side, we show that such a
construction gives us the ability to identify structural connec-
tivity changes in asymptomatic individuals who are at risk
for developing Alzheimer’s disease (AD) but are otherwise
cognitively healthy.
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Figure 1: Schematic diagram of dilated CNN and causal CNN (see [5]
for definition and additional description).

2. Preliminaries
The motivation of this work is the analysis of sequential

manifold-valued data, using deep architectures. As described
above, our architecture utilizes ideas presented earlier in the
context of dilated convolutional neural networks (DCNN)
on Euclidean spaces [5]. To set up our formulation, we
review the standard DCNN formulation and then describe
our proposed manifold-valued DCNN framework.

Dilated Convolutions [5]: Given a 1-D input sequence
x : N → Rn and a kernel w : {0, · · · , k − 1} → R, the
dilated convolution function (x ?d w) : N→ Rn is:

(x ?d w) (s) =

k−1∑
i=0

w(i)x(s− id), (1)

where N is the set of natural numbers, and k and d are
the kernel size and the dilation factor respectively. Notice
that with d = 1, we get the normal convolution operator.
In a dilated CNN, the receptive field size will depend on
the depth of the network as well as on the choice of k and
d. Thus, the authors in [5] suggested the use of residual
connections [21] – this was found to provide stability for
deeper networks. Notice that, unlike the standard residual
network connection, here the authors used a 1× 1 convolu-
tion layer in order to match the width of the input and the
output. Additionally, in order to regularize the network, the
authors used weight normalization [44] and dropout [46].
The weight normalization was applied to the kernel of the
dilated convolution layer. The dropout was implemented by
randomly zeroing out an entire output channel of a dilated
convolution layer. Finally, as an activation function, the au-
thors used ReLU non-linearity. A schematic diagram of a
standard dilated CNN is given in Fig. 1.

Next, we discuss generalizing the operations needed
within a DCNN so that they can operate on manifold-valued
data. Specifically, we will generalize the following oper-
ations: (1) Dilated convolution (2) Residual connection
(3) Weight Normalization (4) ReLU and (5) Dropout, to
the setting where data are manifold-valued.

Recently in [11], the authors proposed a CNN architecture
for manifolds and/or manifold-valued data. We can utilize
some of these ideas towards deriving the dilated convolution



operation. Before discussing the details of the definition of
dilated CNN for manifold-valued data, we will first introduce
some notations, concepts, and terminology.

Assumptions: We use (M, g) to denote a Riemannian
manifoldM with the Riemannian metric g and dM :M×
M → [0,∞) denotes the distance induced by the metric
g. We assume that the samples onM lie inside a regular
geodesic ball of radius r centered at p, Br(p), for some
p ∈ M and r = min {rcvx (M) , rinj (M)}. Here, rcvx and
rinj are the convexity and injectivity radius ofM [19].

Weighted Fréchet mean (wFM): Let {Xi}Ni=1 be sam-
ples onM. The authors in [11] define the convolution oper-
ation using the weighted Fréchet mean (wFM) [39] of {Xi}.
Consider a one dimensional kernel {w(i)}Ni=1 satisfying the
convexity constraint, i.e., (a) ∀i, w(i) > 0 (b)

∑
i w(i) = 1.

Then, the wFM (uniqueness is guaranteed by the statement
above) is defined as:

wFM ({Xi} , {w}) = arg min
M

N∑
i=1

w(i)d2M(Xi,M), (2)

Group of isometries: The set I(M) of all isometries of
M forms a group with respect to function composition. We
will use G to denote this group and for g ∈ G, and X ∈M,
let g.X denote the result of applying the isometry g to point
X (‘.’ simply denotes the group action).

Key Application focus: Diffusion-weighted imaging
(DWI) is a magnetic resonance imaging (MRI) technique
that measures the diffusion of water molecules to generate
contrast in MRI, and has been widely applied to measure the
loss of structural connectivity in the brain. At each voxel in
the image, water diffusion can be variously represented: two
common options are using an elliptical approximation (see
Fig. 2(a)) where a 3 × 3 covariance matrix expresses the
diffusivity properties or an orientation distribution function
where one represents the probability densities of water diffu-
sion over different orientations. One can divide the 3D image
into anatomically meaningful parcels in Fig. 2(b) and then
run standard tractography routines to estimate the strength
of connectivity between each pair of anatomical parcels [42].
The fiber bundles, hence estimated, are shown in Fig. 2(c).
For analysis, one often focuses on certain important fiber
bundles instead of analyzing the full set of fibers. Notice
that if we specify a starting and ending anatomical region
for a fiber bundle, we can consider the corresponding covari-
ance matrices encountered on this “path” as multi-variate
manifold-valued measurements of this function. This is pre-
cisely the type of sequential manifold-valued data that we
will seek to model in this paper.

3. Dilated convolutions for manifold-valued
measurements

We now describe how to obtain the specific components
needed in our architecture for manifold-valued data.

Figure 2: (Left-Right) (a) diffusion MRI, (b) Parcels, (c) Fiber bundles

Dilated convolution operator: Given a 1-D input se-
quenceX : N→M and a kernel w : {0, · · · , k − 1} → R
satisfying the convexity constraint, the dilated convolution
function (X ?d w) : N→M is defined as:

(X ?d w) (s) = arg min
M

k−1∑
i=0

w(i)d2M(X(s−id),M), (3)

where as before, k and d are the kernel size and dilation
factor respectively. Observe that the convexity constraint on
the kernel is merely to ensure that the result also lies on the
manifold. We will use the weighted Fréchet mean (wFM) as
a dilated convolution operator. This choice is mathematically
justified because (1) Eq. (1) is the minimizer of the weighted
variance which is wFM, if the choice of distance is the `2
distance. (2) We will show in Proposition (1) that the dilated
convolution operator is equivariant to the action of G. This
is a direct analog of its Euclidean counterpart. Notice that
the dilated convolution operator defined in (1) is equivariant
to translations, i.e., if x is translated by some amount t,
so is the result (x ?d w). On the manifoldM, the analog
of translation is the action of G, hence the equivariance of
(X ?d w) with respect to G is a desirable property.

Proposition 1. Using notations in (3) and givenw satisfying
the convexity constraint, let F : X 7→ (X ?d w). Then, F is
G-equivariant, i.e., F is equivariant to the action of G.

Proof. Observe that, if g ∈ G acts onX , then, X(s− id) 7→
g.X(s− id), for all s, d, i. Since g is an element of isometry
group, therefore, dM(g.X(s − id), g.M) = dM(X(s −
id),M), for all M ∈ M. So, g.M = (g.X ?d w) (s) iff
M = (X ?d w) (s), which concludes our proof.

In (3), since (X ?d w) is a M valued function, we
will use M as a manifold-valued function, i.e., M(s) =
(X ?d w) (s). Similar to the Euclidean dilated convolution
layer, we learn multiple dilated kernels (given by the number
of output channels) for a dilated convolutional layer.

Residual connection: Let X and F be the input and
output of a dilated convolutional layer where the numbers of
channels are cin and cout. Then, analogous to the Euclidean
residual connection, we define the residual connection using
two steps: (a) First, concatenate X and F (X) to get (cin +
cout) number of channels. (b) Use wFM to extract cout
number of outputs. More formally, let R(X,FX) be the
output of the residual connection, then the kth channel of



the residual connection, Rk(X,F (X)) is given by:
Rk(X,F (X))(s)

def
≡ argmin

M(
cin∑
i=1

wk(i)d
2
M(Xi(s),M) +

cout∑
j=1

wk(j + cin)d
2
M(Fj(s),M)

)
,

s.t.
∑

i
wk(i) = 1,∀wk(i) > 0, (4)

where, k ∈ {1, · · · , cout} and Xi and Fj denotes the ith

and jth channel of X and F respectively.

Weight normalization, ReLU, and Dropout: The
weight normalization in the standard Euclidean convolu-
tional network is not needed here since we impose a convex-
ity constraint on the kernel. We argue that since Dropout is a
regularizer, we will not use dropout for our manifold-valued
DCNN implementation because of the implicit regulariza-
tion due to the convexity constraint. As argued in [11], wFM
is both (a) a contraction mapping [11] and (b) a nonlinear
mapping and hence ReLU or any other non-linearity is not
strictly necessary. Here, similar reasoning explains why a
ReLU is not needed (since the contraction and non-linear
mapping are provided directly by wFM).

Equivariance and Invariance: A few reasons why con-
volutional networks are so powerful are (a) translational
equivariance of a convolution layer and so, weights can be
shared across an image (b) translational invariance property
of the entire convolutional network which is the property
of the fully connected last layer. As we showed above, the
way we defined our dilated convolution operator leads to
equivariance to the action of G. But we still have not shown
that the last layer can be designed in a way that the output
of the network does not change with respect to the action of
G. So, we still need an analogous G-invariant last layer.

Invariant last layer: Analogous to the Euclidean recur-
rent model/ dilated CNN, in the last layer we will only con-
sider the output of the last time point of a sequence, i.e.,
if X is the output of the last dilated convolutional layer
with c number of channels, then the input of our last layer is
{Xi(N)}ci=1, whereX(N) ∈M is the value of the last time
point. We know already that {Xi(N)} are G-equivariant.
So, in order to make the entire dilated convolutional net-
work G invariant, we need an invariant last layer. This is
analogous to the translational invariant property of a fully
connected (FC) layer in the traditional (Euclidean) dilated
CNN. We design our last invariant layer as follows: (a) We
will first learn nC number of wFM (let denoted by {µi}nCi=1)
of {Xi(N)}ci=1 using (2), where nC is a hyperparameter.
(b) For all i ∈ {1, · · · , c}, and for all j ∈ {1, · · · , nC}, we
compute the distance between Xi(N) and µj , denoted by
dij . (c) Thus, for each Xi(N), we get nC number of feature
representations. (d) We will use a standard fully connected
(FC) layer with c × nC features as input and the desired
number of outputs.
Proposition 2. The last layer is G-invariant.

Algorithm 1: A basic ith DCNN building block with
two convolution layers

function DCNN
VARIABLES(N, c1in, c

1
out, c

2
out, cres, k1, d1, k2, d2, nC, c)

xi−1 ← Input(c1in,N)
y1 ← Dilated_Conv(xi−1, c1in, c

1
out, k1,d1)

y1 ← Dilated_Conv(y1, c
1
out, c

2
out, k2,d2)

xi ← Residual(xi−1, y1, c
1
in, c

2
out, cres)

yo ← Inv(xi,nC, c) (For last DCNN block)
end function

Proof. Observe that dij = dM (Xi(N), µj). From Propo-
sition 1, we know that µj is G-equivariant, hence, µj 7→
g.µj , for some g ∈ G if ∀i,Xi(N) 7→ g.Xi(N). But,
dM (Xi(N), µj) = dM (g.Xi(N), g.µj), which concludes
the proof.

In order to reduce the number of parameters in the last
layer, we propose a parameter efficient last layer which is
defined as using a FC layer on the tangent space, i.e., input
{Log (Xi(N))}ci=1 as input to the FC layer, where Log is
the Riemannian inverse exponential map.

Now, we have all components of our dilated CNN on
manifold-valued data. A schematic of our model is shown in
Fig. 3. The building block for a 2-layer manifold DCNN is
shown in Alg. 1. Note that the network parameters are scalar-
valued, with a convexity constraint. In order to enforce the
convexity constraint, i.e., {w(i)} ≥ 0 and

∑
i w(i) = 1, we

will learn
{√

w(i)
}

, which can be any real value. We will
enforce the sum constraint by normalization. Thus we will
use SGD to learn

{√
w(i)

}
.

4. Experiments

In this section, we apply the manifold DCNN to answer
the following questions: (1) By replacing a RNN with our

Res-wFM
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Figure 3: Schematic diagram of the residual block of manifold DCNN.
There’re two DCNN blocks and one residual connection in one block. wFM
is used to extract the cout = 3 channels from the concatenation.
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Figure 4: Schematic diagram of the network architecture for vision
datasets. We use two CNN to extract the features. And we calculate the
covariance between feature channels to get the SPD matrices. In the last
layer, we use G-invariant and a fully connected layer to do the classification.

DCNN with a manifold constraint, what improvement in
terms of the number of parameters/time can we achieve,
without sacrificing performance? (2) For computer vision
applications, how much improvement can we get? (3) When
using our method for scientific analysis of neuroimaging
data, can we obtain promising results that show that such
models can enable discoveries beyond current capabilities?

Next, we will answer the questions above by analyzing
the comparative performance of manifold DCNN via four
experiments: (1) two computer vision applications of clas-
sifying videos and (2) two neuroimaging experiments for
scientific discoveries related to Alzheimer’s disease.

4.1. Improvement in terms of parameters/time on
synthetic and real computer vision datasets

In this section, we organize two sets of experiments:
(1) Classification of different moving patterns on the Moving
MNIST data (2) Classification of 11 actions on the UCF-11
data. Both these experiments serve as empirical evidence of
the efficiency of manifold DCNN in terms of the number of
parameters and time per epoch. We compared our method
with five state-of-the-art sequential models: SPD-SRU [12],
LSTM [24], SRU [40], TT-GRU and TT-LSTM [54]. For
all methods except TT-GRU and TT-LSTM, before the se-
quence process module, we used a convolution block. For
manifold DCNN and SPD-SRU (also for manifold-valued
data), between the convolution block and the sequence pro-
cess unit, we include a covariance block analogous to [58].
The architecture of this experiment is shown in Fig. 4.

As one of the key operations of DCNN is wFM, below we
will use an efficient recursive provably consistent estimator
of wFM on the space of covariance matrices (SPD with
some added small noise along diagonal). Let X(s) be an
SPD matrix for all s ∈ N, and then the nth recursive wFM

estimator, Mn is given as:

M0 = X(s) Mn = Γ
X(s−n∗d)
Mn−1

(
w(n)∑n
j=0 w(j)

)
, (5)

where Γ is the shortest geodesic on the manifold of SPD
matrices equipped with the canonical affine invariant Rie-
mannian metric [23].

4.1.1 Moving MNIST: Moving pattern classification
We generated the Moving MNIST data according to the al-
gorithm proposed in [47]. In this experiment, we classify
the moving patterns of different digits. For each moving pat-
tern, we generated 1000 sequences with length 20 showing
2 digits moving in the same pattern in a 64× 64 frame. The
moving speed and the direction are fixed inside each class,
but the digits are chosen randomly. In this experiment, the
difference in the moving angle from two sequences across
different classes is at least 5◦.

Results: In Table 1, the results show that our method not
only achieves the best test accuracy with the smallest number
of parameters but is also 1.5 times faster than the SPD-SRU
which has the second smallest # of parameters. The kernel
of CNN we use has size 5 × 5 with the input channel and
output channel set to 5 and 10 respectively. All parameters
are chosen in a way to use the fewest number of parameters
without deteriorating the test accuracy.

Scalability: We assess the running time (training and
testing) of manifold DCNN with respect to the SPD matrix
size. From Fig. 5(a), we can see that as the matrix size
increases, the training time increases, while the testing time
remains almost the same. This is a desirable property as it
indicates that inference time does not depend on matrix size.
Also, for different orientations differences, manifold DCNN
gives almost perfect classification accuracy with very small
standard deviation, as shown in Fig. 5(b).

4.1.2 UCF-11: Action classification
The UCF-11 dataset [38] contains 1600 video clips of 11
different classes, such as basketball shooting, diving, etc.
The video lengths (frame sequences) vary from 204 to 1492,
with the resolution of each frame being 320 × 240. We
sample every 3 frames, resize each frame to 160× 120, and
clip the frame sequences to have the length of 50. For our
method, we chose two convolution layers with kernels 7× 7
and output channels 4 and 6 before the DCNN block. Hence,
the dimension of the covariance matrices is 7× 7. For the
manifold DCNN block, we use three residual blocks, with

time (s) Test acc.Model # params. / epoch 30◦versus 60◦ 10◦versus 15◦ 10◦versus 15◦versus 20◦

DCNN 1517 ∼ 4.3 1.00± 0.00 1.00± 0.01 0.95± 0.01
SPD-SRU 1559 ∼ 6.2 1.00± 0.00 0.96± 0.02 0.94± 0.02
TT-GRU 2240 ∼ 2.0 1.00± 0.00 0.52± 0.04 0.47± 0.03

TT-LSTM 2304 ∼ 2.0 1.00± 0.00 0.51± 0.04 0.37± 0.02
SRU 159862 ∼ 3.5 1.00± 0.00 0.75± 0.19 0.73± 0.14

LSTM 252342 ∼ 4.5 0.97± 0.01 0.71± 0.07 0.57± 0.13

Table 1: Comparative results on Moving MNIST. Our model achieves the
highest accuracy (in blue) with the least # of parameters in all setups.



Figure 5: Left: time versus matrix size. As the matrix size increases, the
training time inevitably increases but the testing time consistently remains
extremely small. Right: accuracy versus degree difference of orientation
in the dataset. Beyond the degree difference as small as 15◦, the error bar
becomes negligible implying our model quickly becomes very robust.

channels set to be [1, 3, 3]; [3, 3, 4] and [4, 4, 4] respectively.
The kernel size is 5 for each residual block with the initial
dilation number being 1 (if not specified, the initial dilated
number is always 1 in this paper.). For TT-GRU and TT-
LSTM, we follow the same setting as given in [54]. For
SPD-SRU, SRU, and LSTM, we use the same parameters as
in [12]. All models achieve > 90% training accuracy.

Results: Test accuracy with the number of parameters
and time per epoch is shown in Table 2. We can see the
number of parameters for our method is comparable with
SPD-SRU with higher test accuracy (≈ 4% improvement)
and much faster runtime (≈ 2.5×). Note that without resid-
ual connections, the accuracy drops to 0.809 ± 0.044: in
other words, residual connections are useful.

Take-home message: With the above two experiments,
we can conclude that manifold DCNN (i) is faster, (ii) uses
fewer parameters and (iii) gives better or comparable clas-
sification accuracy compared to the state-of-the-art.

4.2. Group effects in Preclinical Alzheimer’s disease
Cardinal features of Alzheimer’s disease (AD) include

the development of beta-amyloid plaques (amyloid), neu-
rofibrillary tangles (tau), and progressive neurodegeneration
(characterized by MRI) [30]. Autopsy studies among in-
dividuals with AD dementia indicate that degeneration of
myelinated axons in the context of amyloid and tau pathol-
ogy is a defining feature of dementia status [41]. Techniques
for measuring axonal degeneration in vivo include analysis
of cerebrospinal fluid, as well as diffusion-weighted imaging;
however, few studies have tested the extent to which early
amyloid accumulation may be associated with neural injury.
Our goal is to utilize our method to identify white matter
fiber bundles that are affected early in the preclinical dis-

Model # params. time (s)/ epoch Test acc.
manifold DCNN 3393 ∼ 33 0.823± 0.018

SPD-SRU 3337 ∼ 76 0.784± 0.014
TT-GRU 6048 ∼ 42 0.78

TT-LSTM 6176 ∼ 33 0.78
SRU 2535630 ∼ 50 0.75

LSTM 14626425 ∼ 57 0.70

Table 2: Comparative results on UCF-11 data. Our model achieves the
best accuracy and the fastest speed with a small number of parameters.

ease process. Positron emission tomography (PET) imaging
with Pittsburgh compound B (PiB), which identifies amyloid
deposition, can be used as an indicator of AD pathology [28].
Thus, we compared healthy individuals who were positive
for AD pathology (PiB+) to healthy individuals who were
negative for pathology (PiB-). Additionally, we compared
individuals who carried a risk gene for AD (APOE+) to
non-carriers (APOE-).

4.2.1 Diffusion-weighted imaging (DWI)
Data acquisition: Diffusion-weighted imaging was com-
pleted on a General Electric (GE) 3 Tesla scanner with a
32-channel head coil and a spin-echo echo-planar imag-
ing pulse sequence among participants who are asymp-
tomatic. Multi-shell DWI data were collected using b-values
b = 0, b = 500, b = 800, b = 2000, with 2 × 2 × 2mm
resolution. The signal was corrected using MRTrix3[51] and
FSL’s ‘eddy’[3]. Diffusion tensor imaging (DTI) and the
orientation distribution functions (ODF), which were used
as the representative of the DWI, were performed using the
Diffusion Imaging in Python (DIPY) toolbox[18]. To gen-
erate fiber bundles of interest, the data was processed using
TRACULA[56, 55, 57]. With this pipeline, we generated 18
major fiber bundles [52], as shown in Fig. 2(c). Regions of
interest (ROI) in the template space, were inversely warped
back to the subject space to generate the fiber bundles and
each data point used in the analysis for each participant.

Analysis: From the previous experiments, we can see
that manifold DCNN performs well on classification prob-
lems with faster computation speed and fewer parameters.
Due to the fast runtime and the small number of parameters,
we can use permutation testing to perform group analysis.
The statistical testing is performed on each fiber bundle
between the two groups, to determine if the DCNN model
between the two groups is different. To summarize, the setup
is: (1) Group 1 (PiB+) versus Group 2 (PiB-), (2) Group 1
(APOE+) versus Group 2 (APOE-). Now, we will give some
details of the DCNN models for DTI and ODF representa-
tions before the statistical analysis.
(i) Diffusion tensor imaging (DTI): Diffusion tensor imag-
ing (DTI) is a method to represent the Diffusion imaging
with SPD matrices. Since all of the data samples lie on
the SPD manifold, the model is similar to the classification
model above. The only difference between classification
model and this group analysis model is that instead of the
prediction of the classes, we are fitting the two groups of
data into two trainable models, θ1 and θ2 and assessing if
the distributions of θ1 and θ2 are statistically different.
(ii) Orientation distribution function (ODF): Orientation
distribution function (ODF) represents the probability densi-
ties of water diffusion over different orientations. In order
to perform the statistical analysis, we discretized the space
of orientations, i.e., S2. We sampled 724 equally spaced
points on the sphere S2 to represent the ODF. Let the ODF



be denoted by xt, then after the discretization, we have∑724
i=1 x

i
t = 1. As ODF is a probability density function, we

use square root parameterization [8, 45] to represent ODF.
Using the square root parameterization, we map xt onto the
positive orthant of the unit hypersphere of dimension 723,
i.e., S723. As in Section 3, a key component of DCNN is the
definition of wFM, which we can define on Sn:

y(s) = wFM ({w(i)} , {x(s− d ∗ (k − 1) : d : s)})

= arg min
M

k−1∑
i=0

w(i)d2S (x(s− d ∗ i),M) , (6)

Here dS is the rotation invariant geodesic distance on
S723 and x(s) is a sample on S723 for s ∈ N. Analogous to
the SPD manifold, we can define a recursive wFM estimator
mn:

m0 = x(s) mn = Γx(s−n∗d)
mn−1

(
w(n)∑n
j=0 w(j)

)
, (7)

where Γ is the shortest geodesic on S723. Using the
above-defined estimator of wFM, we can define DCNN on
S723 as in Section 3. Note: Our baseline model, SPD-SRU
cannot deal with the Sn manifold as we do here.

4.2.2 Statistical analysis: permutation testing
Suppose we train our model for each of the two groups
for each fiber bundle fb we have, with parameters θfb1 and
θfb2 . Our goal is to test whether the fiber bundle fb is
statistically different between the two groups. Thus, we
model the manifold-valued data and perform statistical anal-
ysis in the parameters space. Since the models for each
group lie in the same parameter space, the statistical analy-
sis can be performed in the parameter space by bootstrap-
ping. We can measure the distance between two models as
σfb = ||θfb1 − θ

fb
2 || to represent the distance between the

group-wise fitted models’ distributions in parameter space.
Then, we need to evaluate how statistically significant the
distance is – and if the value is large enough, it is unlikely
to happen by chance. A simple way to perform the test
for statistical significance is via permutation testing. If we
randomly shuffle (via a random permutation) the group infor-
mation for all our samples (i.e., subjects) and run our model
for both “random” groups, we will get new parameters θ̂fb1
and θ̂fb2 . We define σ̂fb = ||θ̂fb1 − θ̂

fb
2 || as a random variable.

After permuting 5000 times, we can estimate the distribu-
tion of the σ̂fb – this is the Null distribution (See Fig. 6 as
examples). The p-value is defined as the ranking of the σfb

among the distribution of the σ̂fb. If the p-value is less than
the significance threshold α = 0.05, we can conclude that
this is not likely to happen by chance.

Since the length of different fiber bundles varies from 11
to 73, we construct the DCNN to have 3 layers of residual
units, with channels being 1, 3, 3; 3, 3, 5 and 5, 8, 10 respec-
tively. And the 1-D kernel size is 3. We use all the data we
have to pre-train the model. After pre-training, we fine tune
the model during the permutation testing.

PiB APOEExperiments Total Positive Negative Total Positive Negative
Number 196 29 167 669 247 422

Age (years ) (mean (SD)) 62.40 (6.33) 66.29 (4.95) 61.75 (6.30) 65.61 (8.68) 64.55 (7.99) 66.23 (9.00)
Sex (female; %) 134 (68%) 21 (72%) 113 (68%) 426 (64%) 159 (64%) 267 (63%)

Table 3: Description of data/participant demographics used in the study.

4.2.3 Result 1: Group analysis: PiB+ versus PiB-
The study included imaging data acquired from 196 cogni-
tively unimpaired (healthy) participants acquired in a local
cohort at the University of Wisconsin. We provide demo-
graphic information from participants with PiB and APOE
measures in Table 3. Initial analyses were run using single-
shell data, where the model was run on all 18 fiber bundles,
one by one, with the parameters mentioned above. We per-
formed permutation tests for each fiber bundle individually.

Results for the 18 fibers are shown in Table 4 (column
2). We find that two of the 18 fibers satisfied the threshold
of 0.05, which means that statistically these fiber bundles
are different across the two groups. Since the sample sizes
were small, the results presented are uncorrected p-values
(multiple testing correction was not performed).

Fiber bundles evaluated in this analysis included those
which are known to be affected in AD, including the supe-
rior longitudinal fasciculus and cingulum bundle, as well as
control tracts that are not likely to be affected by AD, such
as the corticospinal tract. We found significant differences
between PiB+ and PiB- groups in fiber bundles that are likely
to be affected by AD, including the superior longitudinal
fasciculus and Corpus callosum - forceps minor.

When compared with the SPD-SRU model, which also
reported brain imaging experiments in their paper, the results
show only one out of 18 fibers survives. And also, we find
that our model runs much faster (about 5×), which is very
important when running permutation testing thousands of
times. It takes 3.5 days to run permutation testing 5000 times
using DCNN, while the SPD-SRU takes 18 days. When we
keep the number of GPUs fixed, the difference between 3.5
and 18 will be even more sizable if we expand the number
of permutation testing to 10000 or more.
4.2.4 Result 2: Group analysis: APOE+ versus APOE-

The APOE analysis was performed using data from 669
subjects with APOE information, with 247 of them being
positive for APOE4 (a risk factor for AD). Analyses were
also conducted using the multi-shell dMRI to generate ODF
information. Similar to the preceding group difference anal-
ysis, the model was run on all 18 fiber bundles with the
parameters described previously on both DTI and ODF.

The results for 18 fibers are shown in Table 4 in column 3.
It is noteworthy that SPD-SRU can only deal with the SPD
manifold. So for ODF, which lies on Sn, we can only run
our DCNN model to do the group analysis.

Here, we found that four of the 18 fiber bundles met the
significance threshold of 0.05 with DTI, while SPD-SRU
only captured one. Five fiber bundles were identified when



Figure 6: The Null distribution for one fiber bundle with α = 0.05. If
the real distance (black line) lies in the threshold (red area), that test is
believed to not happen by chance.

using ODF. We found differences by APOE genotype in the
forceps minor, cingulum projecting to parietal cortex, ante-
rior thalamic projections, superior longitudinal fasciculus
projecting to parietal cortex and inferior longitudinal fasci-
culus. We did not find differences in fiber bundles unlikely
to be affected by AD, such as the corticospinal tract in both
experiments. Fiber bundles that were consistently identi-
fied in both the DTI and ODF analyses included the inferior
longitudinal fasciculus and the anterior thalamic projections.
4.2.5 Discussion of preclinical AD analysis results
While amyloid and tau pathology are defining features of
AD, methods are also needed to detect AD-associated neu-
rodegeneration [29]. Neurodegeneration may signal future
cognitive decline. However, methods for detecting early and
subtle neurodegeneration, particularly of myelinated axons,
are not yet available, especially in preclinical AD. This is
why our results here seem promising.

The results suggest significant differences in underlying
fiber bundle microstructure among individuals who meet
biological criteria for AD (based on PiB status) as well as
differences by APOE genotype. Of note, our algorithm iden-
tified significant differences in the cingulum bundle by PiB
status; this white matter fiber bundle connects medial tempo-
ral lobe and parietal cortices as part of a memory network
that is impacted by AD, and is vulnerable to degeneration in
the early stages of AD. Differences in the cingulum bundle
were also apparent among carriers of the APOE4 allele, a
genetic risk factor for sporadic AD. Likewise, superior lon-
gitudinal fasciculus differed by AD biomarker status and
APOE genotype. Projections identified as being significantly
different included fiber bundles projecting to parietal cor-
tices. Parietal cortices are significantly impacted by AD
pathology and are among the first to show amyloid accumu-
lation. The results presented here may suggest that amyloid
accumulation negatively impacts adjacent white matter fiber
bundles. It may also be possible that degeneration of fiber
bundles is a function of AD pathology spreading to anatom-
ically linked brain regions via white matter fiber bundles,
although further longitudinal evaluation is needed to test the
hypothesis. In summary, statistical analysis enabled by our
proposed algorithm was capable of identifying differences
in biologically meaningful brain regions.

Take-home message: Our DCNN model was able to cap-

p-value
Fiber Name Experiment 1 Experiment 2

PiB+ versus PiB- APOE+ versus APOE-
DCNN SPD-SRU DCNN SPD-SRU DCNN
on DTI on DTI on ODF

fmajor_PP 0.443 0.923 0.207 0.600 0.778
fminor_PP 0.008 0.158 0.035 0.025 N/A
lh.atr_PP 0.323 0.632 0.30 0.991 0.028
rh.atr_PP 0.295 0.143 0.86 0.271 0.563
lh.cab_PP 0.276 0.363 0.76 0.644 0.500
rh.cab_PP 0.311 0.263 0.78 0.848 0.444
lh.ccg_PP 0.230 0.267 0.042 0.609 0.043
rh.ccg_PP 0.093 0.087 0.048 0.532 0.048
lh.cst_AS 0.561 0.143 0.58 0.350 0.800
rh.cst_AS 0.629 0.278 0.35 0.667 0.769
lh.ilf_AS 0.309 0.895 0.47 0.977 0.042
rh.ilf_AS 0.405 0.889 0.46 0.563 0.857
lh.slfp_PP 0.482 0.615 0.68 0.107 0.192
rh.slfp_PP 0.571 0.941 0.047 0.154 0.050
lh.slft_PP 0.005 0.041 0.92 0.649 0.556
rh.slft_PP 0.790 0.462 0.53 0.947 0.333
lh.unc_AS 0.623 0.158 0.23 0.860 0.933
rh.unc_AS 0.298 0.895 0.34 0.324 0.182

* N/A: This ODF fiber bundle did not pass Quality Check (QC) after pre-processing.
Therefore, we left it out of the analysis to avoid inconsistencies in the parameters used
for pre-processing the full set of fiber bundles.

Table 4: p-values (uncorrected) for all fibers in different groups. The high-
lights are the fiber bundles that satisfy the significance threshold. Runtime
for DCNN is 5× times faster than SPD-SRU (not included here).

ture more fiber differences with significant effects compared
to the SPD-SRU. It is also noteworthy that our model is much
more efficient: only 60s for one realization of the permuta-
tion test (×# of realizations), while the SPD-SRU model
> 5× times slower. Compared with the SPD-SRU, which
can only handle DTI (SPD), our method is more general:
handles both DTI (SPD) and ODF (Sn) data.

5. Conclusions
We present a new Dilated CNN formulation to model

sequential and spatio-temporal manifold data, where few
alternatives are available. Compared with the standard se-
quential model (RNN), our method can improve the perfor-
mance when evaluated on the number of parameters and
runtime. We show that when using wFM, Weight normal-
ization, ReLU, and Dropout are no longer needed in this
formulation. On the experimental side, for video analysis,
we show that improvements can be obtained with fewer pa-
rameters and shorter running time. Importantly, we show
that our algorithmic contributions facilitate scientific discov-
ery relevant to AD, and may facilitate early disease detection
at the preclinical stage. The analysis enabled by our for-
mulation revealed subtle neurodegeneration of white matter
fiber bundles affected by AD pathology, in brain regions
implicated in prior studies of AD. The code is available at
https://github.com/zhenxingjian/DCNN.
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