
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 1

ManifoldNet: A Deep Neural Network for
Manifold-valued Data with Applications
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Abstract—Geometric deep learning is a relatively nascent field that has attracted significant attention in the past few years. This is partly
due to the availability of data acquired from non-Euclidean domains or features extracted from Euclidean-space data that reside on
smooth manifolds. For instance, pose data commonly encountered in computer vision reside in Lie groups, while covariance matrices that
are ubiquitous in many fields and diffusion tensors encountered in medical imaging domain reside on the manifold of symmetric positive
definite matrices. Much of this data is naturally represented as a grid of manifold-valued data. In this paper we present a novel theoretical
framework for developing deep neural networks to cope with these grids of manifold-valued data inputs. We also present a novel
architecture to realize this theory and call it the ManifoldNet.
Analogous to vector spaces where convolutions are equivalent to computing weighted sums, manifold-valued data ‘convolutions’ can be
defined using the weighted Fréchet Mean (wFM). (This requires endowing the manifold with a Riemannian structure if it did not already
come with one.) The hidden layers of ManifoldNet compute wFMs of their inputs, where the weights are to be learnt. This means the data
remain manifold-valued as they propagate through the hidden layers. To reduce computational complexity, we present a provably
convergent recursive algorithm for computing the wFM. Further, we prove that on non-constant sectional curvature manifolds, each wFM
layer is a contraction mapping and provide constructive evidence for its non-collapsibility. This captures the two fundamental properties of
deep network layers. Analogous to the equivariance of convolution in Euclidean space to translations, we prove that the wFM is
equivariant to the action of the group of isometries admitted by the Riemannian manifold on which the data reside. To showcase the
performance of ManifoldNet, we present several experiments using both computer vision and medical imaging data sets.

Index Terms—Weighted Fréchet Mean, Equivariance, Group action, Riemannian manifolds,
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1 INTRODUCTION

Convolutional neural networks (CNNs) have attracted enor-
mous attention in the past decade due to their significant
success in Computer Vision, Speech Analysis and other fields.
CNNs pioneered by [1] have gained much popularity since
their significant success on Imagenet data reported in [2].
CNNs have traditionally been restricted to dealing with
data residing in vector spaces. There has been a growing
interest in the past several years to generalize CNNs and
deep networks in general to data that reside in smooth
non-Euclidean spaces. Before embarking on a literature
review, it would be useful to categorize the data space
into the following classes: (i) Data that are samples of real-
valued functions defined on a manifold and (ii) data that
are manifold-valued and hence are sample points on a
manifold. In this paper we will consider problems involving
the latter category, namely, when the input data are sample
points on known Riemannian manifolds, e.g., the manifold
of symmetric positive definite (SPD) matrices, SPD(n), the
n-sphere, Sn, the special orthogonal group, SO(n), and
the Grassmannian, Gr(p, n). More precisely, the domain of
interest is an n-dimensional grid of manifold-valued data: a
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function of the form f : U →M where U ⊂ Zn is the image
domain andM is a smooth Riemannian manifold.

We are not aware of much prior work on deep neural
networks (DNNs) that can cope with the data-type described
in (ii) above with the exception of [3]–[6]. In [3], authors
presented a deep network architecture for classification of
hand-crafted features residing on a Grassmann manifold that
form the input to the network. In [4], the authors presented
a DNN architecture for data on SPD(n). In both of these
works [3], [4], authors are not dealing with manifold-valued
images as input data but simply a collection of features
(derived from images) which are manifold-valued. Thus, the
architecture does not involve the use of any convolution or
equivalent operations for Gr(p, n) or SPD(n). Further, they
do not use the natural invariant metric or intrinsic operations
on the Grassmannian or the SPD(n) in the network blocks.
Using intrinsic operations within the layers guarantees that
the result remains on the manifold and hence one does
not require any projection operations to ensure the result
lies in the same space. Work in [5] addresses the issue of
generalizing the concept of batch normalization to neural
network architectures described in [3], [4]. Although, their
batch-normalization generalization can be applied to our
situation of manifold-valued fields/images as well. In [6],
authors develop a local convolution layer which constraints
the weight mask to be SPD by learning unconstrained
weights and taking the matrix inner product of such weight
matrices and adding a fudge factor (scaled identity matrix)
to guarantee the SPD property of the weight mask. Their
convolution operation is the standard Euclidean space
convolution and doesn’t involve proving equivariance to
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symmetry group actions admitted by the SPD(n) manifold.
There are several deep networks reported in the liter-

ature to deal with cases when data reside on 2-manifolds
encountered in Computer Vision and Graphics for modeling
shapes of objects. Some of these are based on graph-based
representations of points on the surfaces in 3D and a
generalization of CNNs to graphs [7], [8]. For more on
Graph CNNs, we refer the reader to a recent comprehensive
survey [?]. There is also recent work in [9] where the authors
presented a deep network called geodesic CNN (GCNN),
where convolutions are performed in local geodesic polar
charts constructed on the manifold. These approaches fall in
the category of functions on a manifold (the first category
above) and hence are fundamentally distinct from our work
reported here.

In this paper, we present a novel DNN framework
called ManifoldNet. This is a potential analog of a CNN
that can cope with input data are manifold-valued images
i.e., the value set belongs to a Riemannian manifold. The
motivation in defining the analog relies on the equivariance
property. Note that convolution of functions in vector spaces
are equivariant to translations. Further, it is easy to show
that traditional convolutions of functions are equivalent to
computing the weighted mean [10]. For the case of manifold-
valued data, we can define the analogous operation of a
weighted Fréchet mean (wFM) and prove that it is equivariant
to the action of I (M). This will be presented in a subsequent
section. A preliminary conference version of this work was
published in [11]. In [11], we presented manifold operations
that allows for the generalization of CNN’s to non-constant
sectional curvature manifold valued data. In this article,
we extend the framework to the case of constant sectional
curvature manifolds as well and present a new architecture
for the same. In comparison to our preliminary work in
[11], in addition to the aforementioned significant extension,
this paper contains an expanded theory section with more
detailed analysis along with a detailed section on the network
architecture and many more experiments pertinent to both
computer vision and medical imaging.

Our key contributions in this work are: (i) we define the
analog of convolution operations for manifold-valued data
to be one of computing the wFM for which we present a
provably convergent, efficient and recursive estimator. (ii) A
proof of equivariance of wFM to the natural action of I (M),
generalizing a fundamental property of CNN’s. (iii) We
prove that on non-constant sectional curvature manifolds,
each wFM layer is a contraction mapping and provide con-
structive evidence for its non-collapsibility of stacked layers.
Further, a proof of collapsibility for the case of constant
sectional curvature manifolds. (iv) A novel deep architecture
involving the Riemannian counterparts to the conventional
CNN units. (v) Several experiments involving the application
of ManifoldNet to both computer vision and medical imaging
data sets. In computer vision, we present experiments on
video classification and image reconstruction (using an auto-
encoder+decoder setting). In medical imaging, we present
experiments on (a) regression between changes in diffusional
structure — captured in the Cauchy deformation tensor
obtained via nonrigid registration of the ensemble average
propagator (EAP) field computed from the patient scan to
the EAP control atlas — and function in movement disorder

patients. (b) An experiment on classification of Parkinson
Disease (PD) patients and Controls (normal subjects) from
diffusion magnetic resonance brain scans.

2 GROUP ACTION EQUIVARIANT NETWORK FOR
MANIFOLD-VALUED DATA

In this section we will define the primary operations for
extending deep learning architectures to manifold-valued
images. Input data will be of the form f : U → M
for U ⊂ ZN the image domain and M a Riemannian
manifold, i.e. a field of M-valued data. We replace the
key blocks of a standard CNN architecture as follows:
(a) Standard convolution replaced by a moving window of
wFM (2.1). (b) ReLU replaced by G-transport/ G-expansion
(see 2.2). (c) Standard fully connected layer is replaced by
an invariant final layer (see 2.3). In subsequent subsections,
we will present a detailed description of each of these basic
operations before moving on to a detailed description of the
architecture we propose.

2.1 wFM onM as a generalization of convolution
We will begin by defining a convolution type operation
for inputs sampled from a Riemannian manifold M. This
operation will slide a moving window of weights over the
input points but replace the usual weighted sum (i.e. inner
product) operation with a weighted Fréchet mean (wFM [12]).

Let {wi}Ni=1 be weights satisfying a convexity constraint,
i.e. wi > 0 for all i and

∑
i wi = 1. Then, the wFM is defined

as,

wFM ({Xi} , {wi}) = argmin
M∈M

N∑
i=1

wid
2 (Xi,M) (1)

This definition works in any metric space, although the ex-
istence and uniqueness properties will vary. For Riemannian
manifolds, these properties have been well characterized, and
will introduce some relevant limitations on our architecture.
Specifically, [13] has shown that the input points must lie
in a ball of radius rcvx(M) to ensure the wFM exists and is
unique. Defining rcvx(M) requires some background, which
we detail in appendix (a) for completeness.

We can use this operation for our goal of constructing a
convolution operation on manifold-valued fields. Suppose
f : ZN → M and w : ZN → R are a manifold-valued
field and a weight filter, respectively. Then we can define a
convolution operation as

(f ∗ w)(y) := wFMx∈ZN (f(x), w(x− y)) (2)

For the rest of the paper, we will assume that the input
samples onM lie inside an open ball U = Brcvx (M). This
will ensure the existence and uniqueness of the wFM as
defined in equation 1. We specify the value of rcvx(M) for
specific manifolds of interest in section 3.

What about Equivariance?: Clearly equation 1 general-
izes the notion of Euclidean mean to manifolds, but this is
hardly a justification for its utility inside a deep network
architecture. We will now show that the wFM operation
generalizes a fundamental property of convolutions in
Euclidean space i.e., isometry equivariance. To this end we
will now show that the wFM is equivariant to the action
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of the natural group of isometries ofM. First we formally
define equivariance and the isometry group of a manifold
M.

Definition 1 (Equivariance). LetX and Y be sets acted upon by
G, i.e. G-sets [14]. Then, F : X → Y is said to be G-equivariant
if ∀g ∈ G, ∀x ∈ X , F (g.x) = g.F (x).

Definition 2 (Group of isometries ofM). We say a diffeomor-
phism φ : M → M is an isometry if d(φ(x), φ(y)) = d(x, y)
for all x, y ∈ M. Note that d is the distance induced by the
Riemannian metric (see appendix (a)). The isometries ofM form a
group under composition. We denote this group by I(M) and for
g ∈ I(M) we denote the result of applying g to x ∈M by g · x.

Clearly M is a G-set, where G = I(M). Now we are
ready to prove the main theorem of this subsection, the
equivariance of the wFM operation to the action of the
isometry group I(M). This result is intuitive, since, as can be
noted from equation 1, the wFM operation is fundamentally
a metric space operation, and thus should be equivariant to
isometric transformations.

Theorem 1. Given {wi} satisfying the convex constraint, let F :
P → U be a function defined by {Xi} 7→ wFM ({Xi} , {wi}).
Then, F is I(M)-equivariant.

Proof. Let g ∈ I(M) and {Xi}Ni=1 ∈ P . We want to show
that,

g · wFM({Xi}, {wi}) = wFM({g ·Xi}, {wi}) (3)

Set M̃ = wFM ({g ·Xi} , {wi}). Then,

N∑
i=1

wid
2
(
g ·Xi, M̃

)
=

N∑
i=1

wid
2 (Xi, g

−1 · M̃
)

So that wFM ({Xi} , {wi}) = g−1 · M̃ . Applying g to both
sides we get equation 3, completing the proof. �

Now that we have defined the convolution type operation
as the wFM for manifold-valued data and have shown its
equivariance to the natural isometry group action admitted
by the manifold M, we present a computationally efficient
estimator for the wFM that will allow us to use it many times
over within the wFM layers of a deep ManifoldNet.

How to compute wFM efficiently?: We will now define
an efficient estimator of the wFM and state a statistical
consistency theorem. To state and prove the statistical
consistency we will need to interpret the samples Xi as being
drawn from an unknown distribution over the continuous,
manifold valued random variable X . Further, we will use
the continuous counterpart of wFM, i.e. the weighted Frechet
expectation (wFE) in the statement of proposition 1. Given
{Xi}Ni=1 ⊂ U and {wi := w (Xi)}Ni=1 such that ∀i, wi > 0,
the nth estimate, Mn of wFM ({Xi} , {wi}) is given by the
following recursion:

M1 = X1 Mn = ΓXn

Mn−1

(
wn∑n
j=1 wj

)
. (4)

Where ΓYX : [0, 1] → U is the shortest geodesic curve from
X to Y 1. This gives us an efficient inductive/recursive way
to define convolution operation onM who’s complexity is
linear in the number of points.

We have the following theorem, showing statistical
consistency of the proposed estimator (4). See appendix (b)
for the definition of the wFE and the proof.

Proposition 1. Let {Xi}Ni=1 be i.i.d. samples drawn from pX on
M. Let the wFE be finite. Then, MN converges a.s. to wFE as
N →∞.

Coming back to the proposed convolution operation
in equation 2, we will use this estimator Mn to compute
an approximate wFM within each window. Proposition-1
means that as the kernel size increases (or equivalently,
as the sampling rate of the underlying continuous image
increases), the estimator converges to the true weighted
Frechet Expectation (wFE) of the sample distribution in the
window (see appendix 5).

We will henceforth denote the above estimator the
inductive wFM estimator (iFME). Note that in [15]–[17], the
authors present recursive algorithms for FM computation on
the hyper-sphere, Stiefel and SPD(n) manifolds respectively.
These specific algorithms are special cases of our formulation
since the wFM approach presented is applicable to any
Riemannian manifold.

Take-home message: To summarize, the wFM (computed
using the above recursive estimator) naturally generalizes
the traditional convolution operation in vector spaces to
smooth manifolds and possesses the fundamental group-
equivariance property of convolutions. We extend this to
a complete moving-window convolution-type operation in
section 3.

2.2 Nonlinear operations between layers

Traditional deep network models use intermediate point-
wise non-linear functions between convolutional layers (e.g.
ReLU). There are at least two properties shared by all such
functions: they are all (a) non-linear and (b) contractive. In
light of the first property these functions are commonly
called “non-linearities". The need for the first property is
obvious: without a non-linear intermediate operation there is
no “deep" learning, since the composition of linear layers will
collapse to a single linear layer. The reasons for the second
property are more complicated [18] but also important.
This section will address both properties of non-linearities
between layers. We will show that the wFM defined above
is actually a contractive operation in its own right. This
leaves us with the problem of non-linearity, which will be
addressed on a case by case basis for non-constant and
constant sectional curvature manifolds respectively.

The Contraction property: We will begin by addressing
the second point, namely, the contraction property. Formally,
let F be a mapping from U to V . Assume U and V are metric
spaces equipped with metrics dU and dV respectively. Then

1. Observe that, in general wFM is defined with
∑N

i=1 wi = 1, but in
above definition,

∑N
i=1 wi 6= 1. We can normalize {wi} to get {w̃i} by

w̃i = wi/
(∑

i wi

)
, but then Eq. 4 will not change as w̃n/

(∑n
j=1 w̃j

)
=

wn/
(∑n

j=1 wj

)
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F is a contraction mapping iff ∃c < 1 such that ∀x, y ∈ U ,
dV (F (x), F (y)) ≤ c dU (x, y), and F is a non-expansive
mapping [18] iff dV (F (x), F (y)) ≤ dU (x, y).

One can easily see that the popular choices for nonlinear
operations like ReLU and sigmoid are indeed non-expansive
mappings. We will now show that the function wFM as
defined in equation 1, is a contraction mapping for any
non-trivial choice of weights. Let {Xi}Ni=1 and {Yj}Mj=1
be two sets of samples on M. Without loss of generality
assume N ≤ M . We consider the set UM = U × · · · × U︸ ︷︷ ︸

M times

.

Clearly {Yj}Mj=1 ∈ U
M and we embed {Xi}Ni=1 in UM as

follows: we construct
{
X̃i

}M
i=1

from {Xi}Ni=1 by defining

X̃i = X(i−1)modN+1. Let us denote the embedding by ι. Now,

define the distance on UM as d

({
X̃i

}M
i=1

, {Yj}Mj=1

)
=

maxi,j d (Xi, Yj). We say the choice of weights for wFM is
trivial if one of the weights is 1 (hence all others are 0).

Proposition 2. Assume that all {Xi}Ni=1 and {Yj}Mj=1 are not
same. Then, for all nontrivial choices of {αi}Ni=1 and {βj}Mj=1
satisfying the convexity constraint, ∃c < 1 such that,

d
(

wFM
(
{Xi}Ni=1 , {αi}

N
i=1

)
,wFM

(
{Yj}Mi=1 , {βj}

M
i=1

))
≤ c d

(
ι
(
{Xi}Ni=1

)
, {Yj}Mj=1

)
(5)

Note that, the above proposition holds for the particular
choice of d.

Necessity for non-linearity: As mentioned before, the
non-linearities between layers prevent the deep neural
networks from collapsing to a single fully connected layer.
The analogous question in the ManifoldNet framework is: do
composition of wFM operations collapse to a single wFM operation
(possibly with different weights)? The answer depends on the
geometry of the manifold. In the case of constant sectional
curvature manifolds, the answer is yes, and in the case of
non-constant sectional curvature manifolds the answer is
most likely no (see conjecture below). We now state both
results here and provide a rigorous proof for the former and
then present a numerical experiment why the latter might be
true in appendix (c).

Theorem 2. The multi-layer ManifoldNet is equivalent to the
single layer Manifold-Net for data on Riemannian manifolds with
constant sectional curvature.

Conjecture 1. The multi-layer ManifoldNet is not equivalent to
the single layer ManifoldNet for data on Riemannian manifolds
with non-constant sectional curvature.

The above statements have important implications. An
implication of Theorem 2 is that the wFM operation is not
sufficient on its own for the constant curvature manifold case.
This is not necessarily a limitation, since it is analogous to the
Euclidean convolution case, but it requires the development
of some intermediate non-linearities. To overcome this,
we propose several choices of non-collapsible pointwise
operations that could be used in between the wFM layers.
We emphasize that these operations are only necessary
in the case where the manifold of interest is of constant

curvature and in general these operations will not maintain
equivariance across layers.

In contrast, conjecture 1 states that for non-constant sec-
tional curvature manifolds, the wFM is not only a contraction
(as was shown before) but also a “non-linearity". Note that
the term “non-linearity" is being abused here. It is possible
in theory for the wFM to be non-linear yet be collapsible,
meaning that several wFM layers are equivalent to a single
one. The important property demonstrated by the conjecture
1 is that wFM layers are most likely non-collapsible on non-
constant sectional curvature manifolds. Moving forward,
we occasionally use the term “non-linearity” regardless to
maintain the analogy with the standard CNN case. Note that
the degree of non-linearity provided by the wFM operation
will depend on the curvature of the manifold, so that
manifolds with non-constant but slowly varying sectional
curvature may not provide much non-linearity in the wFM.
A future avenue of work is to find the explicit relationship
between the rate of change of sectional curvature and the
degree of non-linearity in the wFM operation.

Choices of Non-linearities: We now discuss some non-
linear operators onM.

G-transport: After each layer of convolution (wFM), we
can learn an element g ∈ G to transport on M. Given N
as the output of a wFM layer, we define the G-transport
operator Gtr as a learnable function defined as follows:
Gtr (N ; g) = g.N , where, g ∈ G is learnable. This opera-
tor is equivariant to the action of G. But notice that, for
manifolds with constant sectional curvature, this layer does
not prevent the collapsibility issue as mentioned in Thm. 2.
This motivates a more general non-linear operator defined
below.

G-expansion operator: Let {Xi}Ni=1 ⊂ M be the points
to which we want to apply the convolution operation. We
define the expansion operator Gex as a learnable function
defined as follows:

Gex ({Xi} ; {wi} , {gi}) = wFM ({gi.Xi} , {wi}) (6)

where, {gi} ⊂ G are learnable. Notice that, this expansion
operator does not preserve the equivariance but does pre-
vent the collapsibility problem for manifolds with constant
sectional curvature. An important point to note is that this
operation may map the points to a geodesic ball greater than
the convexity radius ofM. This would be an issue since the
next wFM would not be well defined. To prevent this, we can
explicitly check that the result of the G-expansion operation
lies within a ball of convexity radius, and if not, revert to the
initial input. A more principled approach to this issue will
be addressed in future work.

Tangent ReLU: Let {Xi}Ni=1 ⊂ M be input points and
set µ = FM({Xi}), the unweighted Fréchet mean. Then we
define the TReLU operation by

tReLU(Xi) = Expµ
(
ι−1

(
ReLU(ι

(
Exp−1µ (Xi)

)))
where Expµ and Exp−1µ are the Riemannian exponential and
inverse exponential (log) maps centered at µ, respectively
(see Appendix (a) for definitions). Let ι : TµM → Rm be
an isomorphism from tangent space at µ to Rm, where m
is the dimension ofM. Explicitly, we lift the data points to
the tangent space at the Fréchet mean, apply ReLU in the
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Fig. 1. Left: Schematic diagram of a ManifoldNet; Right: (2× 2) ManifoldNet conv. example

tangent space, and then map back to the manifold using the
Riemannian exponential map. This expansion operator does
not preserve equivariance but does prevents the collapsibility
problem for manifolds with constant sectional curvature.

Take-home message: For manifolds with constant sec-
tional curvature, the presence of an intermediate non-
linearity is essential to prevent collapsibility while for
manifolds with non-constant sectional curvature, it is not
strictly required.

2.3 The invariant (last) layer

We will form a deep network by cascading multiple sliding
wFM windows each of which acts as a convolution-type
layer, possibly with a point-wise non-linearity operation in-
between in the case of manifolds with constant sectional
curvature. Each convolutional-type layer is equivariant to
the group action, and hence at the end of the cascaded
convolutional layers, the output is equivariant to the group
action applied to the input of the network. Let d be the
number of output channels. Each channel will be equivariant
to the isometry group action. But in order to build a
network that yields an output which is invariant to the group
action we would like the last layer (i.e., the analogue of a
linear classifier) to be invariant to the group action. This is
accomplished in traditional CNNs using a combination of
pooling layers and the last FC (fully connected) layer. We
define a final layer which is explicitly invariant.

Construction of the last layer: The last layer is thus con-
structed as follows: Let {Zi}di=1 ⊂M be the output of d chan-
nels and Mu = FM

(
{Zi}di=1

)
= wFM

(
{Zi}di=1 , {1/d}

d
1

)
be the unweighted FM of the outputs {Zi}di=1. Then,
we construct a layer with d outputs whose ith output
oi = d (Mu, Zi). Let c be the number of classes for the
classification task, then, an FC layer with inputs {oi} and c
output nodes is used. Finally, a softmax operation is then
used at the c output nodes to obtain the outputs {yi}ci=1.

Invariance of the last layer: In the following proposition,
we claim that this last layer with {Zi}di=1 inputs and {yi}ci=1
outputs is group invariant.

Proposition 3. The last layer with {Zi}di=1 inputs and {yi}ci=1
outputs is group invariant.

Proof. Using the above construction, let W ∈ Rc×d and
b ∈ Rc be the weight matrix and bias respectively of the FC
layer. Then,

y = F
(
WTo + b

)
= F

(
WT d (Mu, Z) + b

)
, (7)

where, F is the softmax function. In the above equation, we
treat d (Mu, Z) as the vector [d (Mu, Z1) , · · · , d (Mu, Zd)]

t.
Observe that, g.Mu = FM

(
{g.Zi}di=1

)
. As each of the d

channels is group equivariant, Zi becomes g.Zi. Because of
the invariance property of the distance under group action,
d (g.Mu, g.Zi) = d (Mu, Zi). Hence, one can see that if we
change the inputs {Zi} to {g.Zi}, the output y will remain
invariant. �

Take-home message: Analogous to the standard CNN,
the presence of an invariant last layer is crucial to make our
proposed ManifoldNet invariant to the action of G.

In Fig. 1 we present a self-explanatory schematic of the
ManifoldNet depicting the different layers of processing the
manifold-valued data as described above in Sections 2.1-2.3.
A self-explanatory schematic diagram to explain the concepts
of equivariance and invariance is shown in Fig. 2.

X1

M

X1

X6

M
X1

X1

X6

M

Eqivariance

X1

X1

X6

M

Invariance

g:X g:M

d(g:X1; g:M)

d(X1;M)

d(g:Xi; g:M ) = d(Xi;M)

Fig. 2. Schematic of equivariance and invariance where {Xi} ⊂ M, M
is the wFM and g ∈ G is the group element.

3 ARCHITECTURE

We now present the basic building blocks of the ManifoldNet
architecture for both the non-constant and constant sectional
curvature cases. Note that in both cases we can describe the
input as an N -dimensional finite grid of manifold valued
points, explicitly, a function f : U →M where U ⊂ ZN and
M is a suitable manifold. For the purposes of exposition we
will consider the case of a manifold-valued image, i.e. N = 2.
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3.1 ManifoldConv and ManifoldFC
We begin by defining the ManifoldConv layer, a gener-
alization of the convolutional layers in CNNs. In direct
correspondence to the convolutional layer in CNNs, this layer
involves moving/sliding a learnable weight kernel over the
spatial dimensions of the image, but replaces weighted sums
with weighted Fréchet Means. Explicitly, if f : Z2 →M is
the layer input and w : Z2 → R is the learned weight filter,
then the ManifoldConv layer maps f to

(f ∗ w)(y) := wFMx∈Z2(f(x), w(x− y)) (8)

We will henceforth use the notation f ∗ w to denote
ManifoldConv convolutions, where the manifold M is
implicit in the functions. Note that traditional convolution
layers in CNNs are (up to a scale factor) obtained as a special
case when M = R. Hence, the ManifoldConv layer is a
direct generalization of traditional convolution layers in
CNNs.

From an implementation perspective there are several
important points to mention:

1) As in the traditional convolution layers in CNNs, the
weight kernel w : Z2 → R is taken to be non-zero only
in some neighborhood of the origin, i.e. the kernel size.

2) The weight kernel needs to satisfy the convexity con-
straint, i.e.

∑
x∈Z2 w(x) = 1 and w must be strictly

positive. We enforce this by learning an unconstrained
set of underlying weights and then normalizing them
to satisfy the convexity constraint before each forward
pass.

3) The ManifoldConv layer can deal with multiple input
and output channels using the same methods as tra-
ditional CNN’s. This can be used to increase model
capacity by learning multiple weight masks within each
layer.

4) The wFM exists and is unique if all input points reside
inside a geodesic ball of radius rinj(M), the injectivity
radius of the manifold (see Section 2). We will address
this condition on a case by case basis for each manifold
below.

5) On many manifolds there exists no closed form expres-
sion for the wFM, so its naive computation involving
gradient descent applied to the weighted Fr’echet
functional can be computationally rather expensive. A
network with just a few layers may have to compute
millions of wFM’s just for one forward pass. To make
this efficient we use the inductive Fréchet Mean estima-
tor presented in Section 2. The inductive Fréchet Mean
estimator transforms the wFM calculation into a series
of geodesic function evaluations, so assuming M has
a tractable closed form geodesic, this computation will
be fast. Again, we elaborate on this for some specific
manifolds below.

Each ManifoldConv layer also inherits some important
properties from the wFM operation.

1) The ManifoldConv layers inherit equivariance to the
natural action of I(M), the isometry group associated
with the manifold. Specifically, if Z ∈ I(M) then
(Z ·f)∗w = Z ·(f ∗w), where the action Z on a function
is defined by the pointwise action on the output points,
i.e. (Z · f)(x) = Z · (f(x)). This extends a key property

that has made convolution layers in traditional CNNs
so powerful: equivariance to an underlying group of
isometries. Further, just like in the traditional CNNs,
the ManifoldConv layer is equivariant to translations
of the domain. In CNNs, it is well known that the
network layers are equivariant to translations in the
domain as well as range (for example adding a constant
brightness to boost all of the image pixel values). In
analogy to adding a constant brightness to all the pixel-
values of an image we have, an application of the
same group action to all the manifold-valued pixels
in the manifold-valued image setting. Thus, what we
need in this case is equivariance to the isometry group
admitted by the manifold where the pixels take their
values from. This group action equivariance was what
was shown in Theorem-1 for the ManifoldNet. We
can summarize these two properties by saying that
w ∗ (Z · f ◦ T ) = Z · (w ∗ f) ◦ T where T : Zn → Zn is
a translation in the domain.

2) Since the wFM operation is a contraction and, in the
case of non-constant sectional curvature manifolds is
non-collapsible, the ManifoldConv layer also inherits
these properties. These are the two fundamental motives
of the non-linearities in traditional CNNs. Therefore, the
ManifoldConv layer acts as its own "non-linearity" in
the case of non-constant sectional curvature manifolds,
and, crucially, ManifoldConv layers can be stacked
without intermediate ReLU type layers. Note that for
the case of constant sectional curvature manifolds, we
do have collapasibility and thus will require a "non-
linearity" between the layers.

In classification tasks we would like the the output
class to be invariant to some natural group action on the
inputs. The ManifoldConv layers defined above give us
equivariance to the isometry group action, so if we define
a final layer that is invariant to the isometry group action
then the entire network will be invariant. To achieve this
we use the invariant final layer defined in section 2.3. This
layer maps the output activation of our ManifoldConv layer
g : U →M to a real valued vector, which is then easily fed
through one or several (traditional) fully connected layers
and finally through a softmax function for classification. We
call this entire map from final activation to classification the
ManifoldFC layer.

We now present some specific instances of the general the-
ory and architecture that has been developed for manifolds
of interest.

3.2 Non-positive sectional curvature example: M =
SPD(n)

The manifold SPD(n) of symmetric positive define matrices
with the GL(n)-invariant metric is commonly encountered
in computer vision and medical imaging applications. For
e.g., in the former, for metric learning problems, covariance
tracking etc. and in the latter, diffusion tensor imaging,
elastography etc. For more on the use of covariance matrices
in computer vision, we refer the reader to [19]. The space
of SPD matrices is a Riemannian symmetric space with non-
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constant sectional curvature [20], and thus (section 2) we can
design ManifoldNet classifiers of the form

ManifoldConv→ . . .→ManifoldConv→ManifoldFC

For SPD(n) with the GL(n)-invariant metric the geodesic
ΓYX : [0, 1] → SPD(n) between two points X and Y on
SPD(n) is given by [21]

ΓYX(t) = X
1
2

(
X−

1
2Y X−

1
2

)t
X

1
2 (9)

SPD(n) is geodesically complete. Moreover, since SPD(n)
has non-positive section curvature, a theorem of E. Cartan
(see 6.1.5 in [22]) gives that the wFM is a global operation
on SPD(n), i.e. for any points {Xi} ⊂ SPD(n) and weights
{wi} satisfying the convexity constraint, wFM({Xi}, {wi})
exists and is unique.

Note that the real valued powers of matrices in equa-
tion 9 require eigen-decompositions for computation. We
implement the ManifoldConv and ManifoldFC operations
for SPD(n) in PyTorch 2.

3.3 Constant curvature example:M = Sn−1

The hypersphere Sn−1 is ubiquitous across a multitude of
applications. In information geometry, the hypersphere arises
as a parametrization of statistical manifolds, i.e. manifolds of
probability densities, endowed with the Fisher-Rao metric. This
metric is natural to the manifold of densities: it is invariant
to reparametrizations of the density functions [23].

The unit Hilbert sphere identification with a statistical
manifold is obtained using the so called square root density
parametrization. For a comprehensive study of the square root
parametrization the reader is referred to [23]. Formally, the
square root parametrization is a map

√
· : X → Sn−1, 3 <

n ≤ ∞, from a statistical manifold X to the unit hypersphere.
Under the square root parametrization the natural SO(n)-
invariant geodesic metric on Sn−1 is equivalent to the Fisher-
Rao metric, i.e. the square root parametrization

√
· is an

isometry.
Note that Sn−1 is a manifold with constant sectional

curvature. We must thus use a “non-linearity" between
successive layers (Section 2.2). We will later experiment with
several of the non-linearities presented in (Section 2). On
Sn−1, geodesics take the simple form

Γy
x(t) =

1

sin(θ)
(x sin((1− t)θ + y sin(tθ)) , (10)

where, θ = arccos(xty) and rinj(S
n−1) = π/2, meaning

that the input points to the wFM on Sn−1 must lie within
distance π of each other. The square root parametrization
maps points only onto the positive orthant of the hyper-
sphere, which is contained within a ball of radius π/2.
Hence the wFM is a global operation on square root
parametrized densities, i.e. if {√pi} ⊂ Sn−1 are the images
of some densities under the square root parametrization and
{wi} are weights satisfying the convexity constraint then
wFM(

√
pi, {wi}) exists and is unique. We implement the

ManifoldConv, the ManifoldFC operation for Sn−1, and
several choices of non-linearities in PyTorch. 3.

2. SPD(n) implementation
3. Sn−1 implementation

4 EXPERIMENTS

We now evaluate the ManifoldNet framework on two each
of medical imaging and vision tasks respectively: 1) Diffusion
Tensor field classification, 2) nonlinear regression between
structure and function, 3) Video Reconstruction and 4) Video
Classification.

4.1 Classification of diffusion tensor images from
Parkinson Disease patients and Controls

time (s) Accuracy
Model Non-linearity # params. / sample Training Accuracy Test Accuracy

DTI-ManifoldNet None ∼ 30K ∼ 0.3 0.973± 0.02 0.948± 0.03
ODF-ManifoldNet Tangent-ReLU ∼ 153K ∼ 0.02 0.951± 0.03 0.942± 0.02
ODF-ManifoldNet G-expansion ∼ 153K ∼ 0.02 0.934± 0.02 0.928± 0.01

ResNet-34 ReLU ∼ 30M ∼ 0.008 0.984± 0.04 0.713± 0.02
CapsuleNet ReLU ∼ 30M ∼ 0.009 0.63± 0.02 0.62± 0.04

TABLE 1
Comparison results on Diffusion MRI classification.

In this experiment, we use a dataset consisting of dif-
fusion weighted magnetic resonance (MR) images from
355 subjects diagnosed with Parkinson’s disease (PD) and
356 control (healthy) subjects acquired at the University of
Florida. This data is available for research use by request
via the National Institute of Neurological Disorders (NINDS)
Parkinson’s Disease Biomarker Program (PDBP). All images
were collected using a 3.0 T MR scanner (Philips Achieva)
and 32-channel quadrature volume head coil. The parame-
ters of the diffusion magnetic resonance image acquisition
sequence were as follows: gradient directions = 64, b-values
= 0 and 1000 s/mm2, repetition time = 7748 ms, echo time
= 86 ms, flip angle = 90 deg, field of view = 224× 224 mm,
matrix size = 112 × 112, number of contiguous axial slices
= 60, slice thickness = 2 mm, and SENSE factor P = 2. Eddy
current correction was applied to each data set by using the
widely used and publicly available FSL software pacakage
[24].

From these raw diffusion weighted MR images we
segment 12 regions of interest (ROIs) in the sensorimotor
tracts, regions known to be affected by PD. This segmentation
is achieved by registering to SMATT [25], a probabalistic
atlas of the human sensorimotor tracts. For an example
tract (M1) in the SMATT template, see figure 3. Our
goal is to classify PD/Control directly from the diffusion
MRI data. We test two different ManifoldNet based ap-
proaches for doing this, along with a traditional CNN model.

Fig. 3. M1 Template
[25]

The first approach utilizes diffusion
tensors, which capture the local diffu-
sion process within a voxel using a
symmetric positive definite matrix [26].
The second approach utilizes orientation
distribution functions (ODF’s), a more
sophisticated representation than the
diffusion tensors that captures the radial
projection of the ensemble average of
the diffusion propagator (probabality density) function [27].
It is well known that ODFs can capture crossing fibers,
a phenomenon which diffusion tensor representation is
incapable of modeling [28]. The final approach naively trains
a CNN directly on the raw data represented as a scalar field
with several channels. Below we describe the data-processing

https://github.com/cvgmi/manifold-net-dmri
https://github.com/cvgmi/manifold-net-sphere
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pipeline, architecture choice and results for each of the
approaches considered. These results are also summarized
in table 1.

• DTI Representation: After extracting 12 ROIs (corre-
sponding to 6 sensorimotor tracts in each hemisphere
of the brain) we fit diffusion tensors to the data in these
ROIs. This gives us a diffusion tensor field with 12
channels (one for each ROI). Since diffusion tensors
are symmetric and positive definite matrices, we can
represent each channel as a field fi : U → SPD(3) for
U ⊂ R3.
We use a 7-layer ManifoldNet architecture consisting
of 5 ManifoldConv layers followed by a ManifoldFC
layer and finally a softmax. We utilize a cross entropy
loss function and train for 100 epochs using an Adam
optimizer with a learning rate of 0.005. Utilizing this
training procedure over a 10-fold cross-validtaion gives
a mean classification accuracy of 97.3% on the training set
and 94.8% on the test set. Inference time for a single
SMATT fiber collection is about 0.3 s on a GTX 1080 Ti
GPU.

• ODF Representation: In this case we fit orientation
distribution functions to diffusion data within each voxel
using the DiPy implementation of DSI with deconvolu-
tion [29]. This gives us an ODF field with 12 channels
which, using the square root density parametrization
[30], gives us an image of (Hilbert) sphere valued
data, i.e. fi : U → S∞ for each channel (ROI), where
U ⊂ R3. Of course, the probability density at each voxel
is discretized, so that we can actually represent an ODF
field by fi : U → SN and N <∞.
Recall that the sphere is a manifold with constant
sectional curvature, so we need to utilize some non-
linearity in between consecutive ManifoldConv layers
as described in section 2.2. For this purpose, we test
both the G-expansion operator and the tangent ReLU
operation defined earlier. Specifically, we use 9 layers of
ManifoldConv layers, each second ManifoldConv layer
followed by a non-linearity (to increase the receptive
field before the non-linearity [31]). This is followed by
a ManifoldFC layer and a softmax for classification.
We use the same training and testing procedure as
in the DTI representation case, i.e. cross entropy loss
trained for 100 epochs using Adam with a learning rate
of 0.005. Using the G-expansion operator gives us a
mean classification accuracy of 93.4% on the training set
and 92.8% on the testing set. Using the tangent ReLU
operation gives us a mean classification accuracy of 95.1%
on the training set and 94.2% on the test set. Inference time
for a single SMATT fiber collection is about 0.02 s on a
GTX 1080 Ti GPU. We note that the relative efficiency
of the recursive FM estimator on the sphere allows us
to build a larger network while lowering inference time.
This larger network improves classification accuracy.
For reference, a 5 layer ODF representation network
(the same size as the DTI case) gives a test classification
accuracy of 74%, significantly worse than the larger
network.

• Raw Signal Representation: In this case we do not fit
any specific model to the data. Each q-space sampling

direction of the raw signal corresponds to a scalar
diffusion weighed image along that direction. Thus we
interpret each sampling direction as a channel of a multi-
channel image which we feed into a traditional CNN
and CapsuleNet respectively.
For the CNN architecture we utilize a ResNet-34 archi-
tecture which is trained from scratch using the training
procedure described in the original paper [32]. 10-fold
cross-validation gives us a mean training accuracy of
98.4%. We noted significant overfitting late in training
so we report both an early stoppage test accuracy of 71.3%
and a non-early stoppage test accuracy of 42%. Note that
early stoppage was not considered for the previous two
experiments, the reported test accuracy’s are simply
those obtained at the end of the final epochs.
We also compared the performance of the ManifoldNet
with a CapsuleNet [33], [34] with dynamic routing [35],
again trained from scratch using the same training
procedure reported in [35] on the data representation
described above. Ten-fold cross validation yields a
training accuracy of 63% and a test accuracy of 62%.

Note that ManifoldNet significantly outperforms the
traditional CNN architecture on generalization performance,
suggesting that the ManifoldNet architecture encodes better
inductive biases for the problem. Beyond this, the ODF
representation gives approximately equal accuracy to the
DTI representation. This is slightly unexpected, since the
ODF representation is more informative than the DTI rep-
resentation. We hypothesize that it is due to the differences
in architectures between the constant sectional curvature
manifold corresponding to the ODF representation and
non-constant sectional curvature manifold corresponding
to the DTI representation, although more work is needed to
conclusively determine the reasoning.

4.2 Nonlinear Regression between Structure and Func-
tion

This dataset contains high angular resolution diffusion
magnetic resonance image (HARDI) scans from, 1) healthy
controls, 2) patients with essential tremor (ET) and 3) Parkin-
son’s disease (PD) patients. This data pool contains scans
from 25 controls, 15 ET and 26 PD patients. This HARDI
data was acquired using the same acquisition parameters
as described in the previous experiment. The dimension of
each image is (112× 112× 60). From each of these images,
we identify the region of interest (ROI) (40 voxels in size)
containing the Substantia Nigra (a neuroanatomical structure
known to be affected most by PD and ET). In morphometric
analysis, it is common to use the Cauchy deformation tensor
(CDT) field to capture changes in a patient scan with respect
to a reference template/atlas. Thus, in order to capture
changes in patient HARDI scans with respect to the control
atlas, we first non-rigidly register (see [36]) each of the
EAP (ensemble average propagator – a probability density
function) fields estimated from the input HARDI scan (see
[37]) to the computed EAP atlas and obtain the CDT at each
voxel in the ROI, given by

√
JTJ , where, J is the Jacobian

of the non-rigid transformation [36]. The CDT is an SPD
matrix of dimension (3 × 3) in this case. Hence, for each
patient we extract a CDT field of dimension (3× 3× 40). In
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this experiment, we seek to find the relationship between
structural information in the form of CDT and an important
clinical measure using the MDS-UPDRS (Movement Disorder
Society’s revision of the Unified Parkinson’s Disease Rating
Scale) [38]. The MDS-UPDRS score is widely used to follow
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Fig. 4. Schematic description of autoencoder+iFME network

the longitudinal course of PD. These scores are obtained via
interviews and clinical observations by an expert. In this
experiment, available to us are the MDS-UPDRS scores for
all the 58 subjects in the population under consideration.
This score is a nonnegative natural number, with smaller
values indicating normality.

For these 58 patients, we used a 3 layer ManifoldNet to
find the relation between CDT field and MDS-UPDRS scores.
We used an MSE loss and obtained an R2 statistic of 0.93,
outperforming conventional manifold regression techniques
such as [39].

4.3 Video Reconstruction Experiment
Here we present experiments demonstrating the applica-
bility of the theory layed out in Section 2 to dimension-
ality reduction and representation learning. Autoencoder
architectures are commonly used for these purposes. This
field has seen several significant advances in the past few
years, including the introduction of denoising autoencoders
[40], variational autoencoders [41], autoregressive models
(PixelCNN [42], PixelRNN [43]), and flow-based generative
models [44]. Many of these architectures are modifications
of the traditional autoencoder network, which attempts
to learn an identity map through a smaller latent space.
In this experiment we will modify the usual autoencoder
architecture by adding a linear dimensionality reduction
layer in the latent space, achieved using a wFM of points on
a Grassman manifold.

4.3.1 Background
To compute a linear subspace using the ManifoldNet frame-
work we use an intrinsic averaging scheme on the Grass-
mannian. A point on the Grassmannian Gr(k, n) correspond
to k-dimensional subspaces of the vector space Rn. The
Grassmannian is a smooth Riemannian homogeneous space
[20] and a point X ∈ Gr(k, n) on the Grassmannian can
be specified by an orthonormal basis X , i.e. an (n × k)
orthonormal matrix. Hauberg et al. [45] showed that the
one dimensional principal subspace can be computed as an
average of all one dimensional subspaces spanned by nor-
mally distributed data. Motivated by this result, Chakraborty
et al. [46] proposed an efficient intrinsic averaging scheme
on Gr(k, n) that converges to the k-dimensional principal

subspace of a normally distributed dataset in Rn [46]. In the
ManifoldNet framework, we can modify this technique to
learn a wFM of points on the Grassmannian that corresponds
to a subspace of the latent space.

A traditional convolutional autoencoder performs non-
linear dimensionality reduction by learning an identity
function through a small latent space. A common technique
used when the desired latent space is smaller than the output
of the encoder is to apply a fully connected layer to match
the dimensions. We replace this fully connected layer by a
weighted subspace averaging and projection block, called
the Grassmann averaging layer. Specifically, we compute the
wFM of the output of the encoder to get a subspace in the
encoder output space. We then project the encoder output
onto this space to obtain a reduced dimensionality latent
space. We call an autoencoder with the Grassmann averaging
block an autoencoder+iFME network, as shown in Fig. 4. In
the experiments, we compare this to other dimensionality
reduction techniques, including regular autoencoders that
use fully connected layers to match encoder and latent space
dimensions.

4.3.2 Architecture and Results

We begin by testing on a 1000 frame color sample of video
from the 1964 film “Santa Clause Conquers the Martians”
of frame size 320 × 240. Here we use an 8 layer encoding-
decoding architecture with Conv → ELU → Batchnorm
layers, with the final layer applying a sigmoid activation to
normalize the pixel values. The encoder returns a feature
video consisting of 128 channels of size 120 for a dimension
of (1000 × 15360). We compare a fully connected layer to
a Grassmann averaging layer, both mapping to a desired
latent space of dimension (1000× 20). The per pixel average
reconstruction error for the Grassmann block network is 0.0110,
compared to 0.0122 for the fully connected network, representing
an improvement of 10.9%. In general, the Grassmann averag-
ing layer tends to do as well or better than the fully connected
layer. Although in theory the fully connected layer can learn
the same mapping as the Grassmann averaging layer, it has
a much larger parameter space to search for this solution,
implying that it is more likely to get trapped in local minima
in the low loss regions of the loss function surface. We also
observe a parameter reduction of 46%. In general the Grassmann
averaging layer network is slower per iteration than the
fully connected network, but also tends to exhibit faster
convergence so that the time to reach the same reconstruction
error is less for the Grassmann averaging layer. Overall, we
see an improvement in all major performance categories.

time (s) orientation (◦)
Mode # params. / epoch 30-60 10-15 10-15-20

SPD-TCN 738 ∼ 2.7 1.00± 0.00 0.99± 0.01 0.97± 0.02
SPD-SRU [47] 1559 ∼ 6.2 1.00± 0.00 0.96± 0.02 0.94± 0.02
TT-GRU [48] 2240 ∼ 2.0 1.00± 0.00 0.52± 0.04 0.47± 0.03
TT-LSTM [48] 2304 ∼ 2.0 1.00± 0.00 0.51± 0.04 0.37± 0.02

SRU [49] 159862 ∼ 3.5 1.00± 0.00 0.75± 0.19 0.73± 0.14
LSTM [50] 252342 ∼ 4.5 0.97± 0.01 0.71± 0.07 0.57± 0.13

TABLE 2
Comparison results on Moving MNIST.
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4.4 Video Classification Experiment
Here we utilize the ManifoldNet architecture to design a low
parameter video classifier. We start by using the method
in [51] which we summarize here. Given a video with
dimensions (F × 3×H ×W ) of F frames, 3 color channels
and a frame size of (H ×W ), we can apply a traditional con-
volution layer to obtain an output of size (F ×C ×H ′×W ′)
consisting of C channels of size (H ′ × W ′). Interpreting
each channel as a feature map, we shift the features to
have a zero mean and compute the covariance matrix of
the convolution output to obtain a sequence of F symmetric
positive (semi) definite (SPD) matrices of size (C ×C). From
here we can apply a series of temporal ManifoldNet wFMs
to transform the (F × C × C) input to a temporally shorter
(F ′ ×K × C × C) output, where K are the temporal wFM
channels. We then reshape this to (F ′K×C×C) and pass it
through an invariant final layer (section 2.3) to obtain a vector
of size F ′K . Finally, a single FC+softmax layer is applied to
produce a classification output. We call this the SPD temporal
convolutional architecture SPD-TCN. In general, the SPD-
TCN tends to perform very well on video classification tasks
while using very few parameters, and runs efficiently.

We tested the ManifoldTCN on the Moving MNIST
dataset [52]. In [47] authors developed a manifold valued
recurrent network architecture, dubbed SPD-SRU, which
produced state of the art classification results on a version
of the Moving MNIST dataset in comparison to LSTM [50],
SRU [49], TT-LSTM and TT-GRU [48] networks. For the
LSTM and SRU networks, convolution layers are also used
before the recurrent unit. We will compare directly with these
results. For details of the various architectures used please
see section 5 of [47]. The Moving MNIST data generated in
[52] consists of 1000 samples, each of 20 frames. Each sample
shows two randomly chosen MNIST digits moving within a
(64× 64) frame, with the direction and speed of movement
fixed across all samples in a class. The speed is kept the same
across different classes, but the digit orientation differs across
two different classes. For this experiment the SPD-TCN will
consist of a single wFM layer with kernel size 5 and stride 3
returning 8 channels, leading to an (8× 8) covariance matrix.
We then apply three temporal SPD wFM layers of kernel size
3 and stride 2, with the following channels 1→ 4→ 8→ 16,
i.e. after these three temporal SPD wFMs we have 16 temporal
channels. This (16×8×8) is used as an input to the invariant
final layer to get a 16 dimensional output vector, which is
transformed by a fully connected layer and softmax to obtain
the output. We summarize the 10-fold cross validation results
for several orientation differences between classes in Table
2. As evident from this table of comparisons, the SPD-TCN
yields better results in comparison to the competing methods
specifically in terms of the number of parameters as well as
accuracy for the smaller angular orientation cases.

5 DISCUSSION AND CONCLUSIONS

In this paper, we presented a novel deep network suited for
processing manifold-valued data sets. The key distinction
between the work presented here and that presented in the
literature under the umbrella of geometric deep learning is
the type of input to the network. Here, we are interested
in finite grids of manifold-valued data, such as a finite grid

(thought of as an image) of (3, 3) SPD matrices as was used
in the diffusion tensor MRI based classification experiment
presented earlier. One could easily apply standard CNNs to
such data by ignoring the structure of the SPD matrices
and simply vectorizing them. This however ignores the
geometry underlying the data space and will in general lead
to erroneous and inaccurate results. For instance, when we
want to find the mean of two points on a sphere, if we ignore
the geometry of the sphere and use the chordal distance
between the two points to find the mean, this mean will not
lie on the sphere. Thus, it is important to take the geometry
of the data space into consideration and perform intrinsic
operations admitted by the manifold on which the data lie.
That said, in this paper we defined analogs of convolutional
layers (in CNNs) called wFM layers that perform intrinsic
operations on the manifold where the data reside. The
existence and uniqueness of the wFM assumes that the data
lie within a convexity radius specific to the manifold. This
is usually the case in practice for the manifolds commonly
encountered in applications namely, SPD(n), Gr(p, n), Sn

and others. However, there might be special situations when
the data does not satisfy this assumption and this matter
needs closer examination in future work.

From a computational perspective, since the wFM opera-
tions need to be performed anywhere from several thousands
of times for small networks, to several millions of times for
larger networks, we presented an efficient recursive estimator
of wFM. Currently, the rate of convergence of the recursive
estimator is linear [15], [46] in the number of data points
whose wFM is being computed. There is however scope to
improve this rate of convergence by using the geometry
of the manifold in weight selection within the recursive
estimator. We will address this issue in our future work.

In summary, our key contributions in the work presented
here are: (a) A novel deep network to be perceived as a
generalization of the CNN to manifold-valued data inputs
using purely intrinsic operations on the data manifold.
(b) Analogous to convolutions in vector spaces – which
can be computed using the weighted sums – we present
wFM operations on the manifold and prove the equivari-
ance of the wFM to natural group actions admitted by
the manifold. (c) An efficient recursive wFM estimator
that is provably convergent. (d) Constructive evidence on
the non-collapsibility of stacked wFM layers (wihtout any
intermediate nonlinearities such as the ReLU) for non-
constant curvature manifolds and a theorem proving the
collapsibility in the case of constant curvature manifolds.
(e) Several experimental results demonstrating the efficacy
of the ManifoldNet for applications in computer vision and
medical imaging.
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APPENDIX A: EXISTENCE AND UNIQUENESS OF
THE WFM
Let (M, gM) be an orientable complete Riemannian mani-
fold equipped with a Riemannian metric gM, i.e., ∀x ∈ M
we have gMx : TxM× TxM → R, a bi-linear symmetric
positive definite map, with TxM the tangent space ofM at
x ∈ M. The Riemannian metric gM induces a distance
d : M × M → R+. We denote the supremum of the
sectional curvatures ofM by ∆. We now define the concept
of injectivity and convexity radius.

Definition 3. Let p ∈ M and r > 0. Then Br(p) =
{q ∈M|d(p, q) < r} is the open ball at p of radius r

Definition 4. [53] We define local injectivity radius at p ∈M,
rinj(p) as the largest radius r for which

Expp : (Br(0) ⊂ TpM)→M

is defined and is a diffeomorphism onto its image. The injectivity
radius [54] ofM is defined as rinj(M) = infp∈M

{
rinj(p)

}
.

Within Br(p) with r ≤ rinj(M) the exponential map is
invertible and we call Exp−1p : Br(p) → U ⊂ TpM the
inverse Riemannian Exponential or Riemannian Log map.

Definition 5. [55] An open ball Br(p) is a regular geodesic ball
if r < rinj(p) and r < π/

(
2∆1/2

)
.

Note that in Definition 5 and below we interpret 1/∆1/2

as∞ for ∆ ≤ 0. If p, q ∈ Br(p) for Br(p) a regular geodesic
ball then there exists a unique geodesic Γ : [0, 1] → Br(p)
with Γ(0) = p and Γ(1) = q [55].

Definition 6. [56] We say a set U ⊂ M is strongly convex if
for all p, q ∈ U , there exists a unique length minimizing geodesic
segment between p and q and the geodesic segment lies entirely in
U .

Definition 7. [53] Let p ∈ M. We define
local convexity radius at p, rcvx(p), as rcvx(p) =
sup

{
r ≤ rinj(p)|Br(p) is strongly convex

}
. The convexity

radius ofM is defined as rcvx(M) = infp∈M {rcvx(p)}.

With these above definitions, we can now state the
main uniqueness and existence theorem for the wFM on
Riemannina manifolds, paraphrased from [13].

Theorem 3. The wFM exists and is unique inside a geodesic ball
of radius rcvx(M).

APPENDIX B: CONSISTENCY OF PROPOSED WFM
ESTIMATOR

The proof strategy is to cast the wFM computation as an
unweighted FM computation, and then use efficient FM
estimators. Let ωM > 0 be the Riemannian volume form.

Let pX be the probability density of a U -valued ran-
dom variable X with respect to ωM on U ⊂ M, so that
Pr (X ∈ A) =

∫
A pX(Y )ωM (Y ) for any Borel-measurable

subset A of U. Let Y ∈ U , we can define the expectation of
the real valued random variable d2(, Y ) : U → R by

E
[
d2(, Y )

]
=

∫
U
d2(X,Y )pX(X)ωM(X)

Now, let w : U → (0,∞) be an integrable function where∫
U w (X)ωM (X) = 1. the probability measure P̃r defined

by

P̃r (X ∈ X) =

∫
X

p̃X(Y )ωM(Y ) :=

∫
X

1

C
pX(Y )w(Y )ωM(Y )

where, X lies in the Borel σ-algebra over U and let C =∫
U pX(Y )w(Y )ωM(Y ). Note that the constant C > 0, since
pX is a probability density, w > 0 andM is orientable.

Now, we will state and prove the following proposition.

Proposition 4. Using the notation from above we have:
(i) supp (pX) = supp (p̃X). (ii) wFE (X, w) = FE

(
X̃
)

.

Proof. Let X ∈ supp (pX) so that pX (X) > 0. Since w(X) >
0 we have p̃X (X) > 0 and thus, X ∈ supp (p̃X). So

supp (pX) ⊂ supp (p̃X)

On the other hand, assume X̃ to be a sample drawn from p̃X .
Then, either pX

(
X̃
)

= 0 or pX
(
X̃
)
> 0. If, pX

(
X̃
)

= 0,

http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=3045118.3045209
http://dl.acm.org/citation.cfm?id=3045118.3045209
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then, p̃X
(
X̃
)

= 0 which contradicts our assumption. Hence,

pX
(
X̃
)
> 0, i.e., X̃ ∈ supp (pX) and so

supp (p̃X) ⊂ supp (pX)

This concludes the proof of part (i).
Let X and X̃ be theM valued random variable following

pX and p̃X respectively. We define the weighted Fréchet
expectation (wFE) of X as

wFE (X, w) = argmin
Y ∈M

∫
M
w(X)d2(X,Y )pX(X)ωM(X)

Observe,

Ew
[
d2(, Y )

]
:=

∫
U
w(X)d2(X,Y )pX(X)ωM(X) (11)

= C

∫
U
d2(X,Y )p̃X(X)ωM(X) = C Ẽ

[
d2(, Y )

]
(12)

Hence, we get FE
(

X̃
)

= wFE (X, w), as C is independent of
the choice of Y , which concludes the proof of part (ii). �

Now we are ready to prove consistency. For convenience,
we restate the proposition here.

Proposition 5. Using the notations and assumptions above, let
{Xi}Ni=1 be i.i.d. samples drawn from pX onM. Let the wFE be
finite. Then, MN converges a.s. to wFE as N →∞.

Proof. Using Proposition above we know that ∃ p̃X such
that, wFE (X, w) = FE

(
X̃
)

. Thus, it is enough to show the
consistency of our proposed estimator when weights are
uniform. In order to prove the consistency, we will split the
proof into two cases namely, manifolds with 1) non-positive
sectional curvature and 2) non-negative sectional curvature.
The reason for doing this split is so that we can use existing
theorems in literature for proving the result. We will use the
theorems proved in [57] and [58] for manifolds with non-
positive and non-negative sectional curvatures respectively.
Note that the proof holds only for manifolds with a uniform
sign of sectional curvatures. �

Theorem 4 (M has non-negative sectional curvature). Using
the above notations, if ∃A > 0 such that, d (Mn, Xn+1) ≤ A for
all n. Then, MN converges a.s. to wFE as N →∞ (see [58] for
the proof).

Theorem 5 (M has non-positive sectional curvature). Using
the above notations MN converges a.s. to wFE as N → ∞ (see
[57] for the proof).

APPENDIX C: (NON) COLLAPSABILITY FOR (NON)
CONSTANT SECTIONAL CURVATURE MANIFOLDS
Theorem 2. The multi-layer ManifoldNet is equivalent to the
single layer Manifold-Net for data on Riemannian manifolds with
constant sectional curvature.
Proof. Using Proposition 5, it is enough to show that for any
three data points, the unweighted FM is equivalent to two
successive wFM layers. We use homogeneous coordinates
[59] (as shown in Fig. 5) to denote a point on manifolds with
constant sectional curvature. The homogeneous coordinate
of a point with respect to a triangle can be calculated using
the signed distance from the point to the sides of the triangle.

Consider a triangle ABC onM (assumeM is of constant
sectional curvature in the rest of the proof). Let A and B be
the points that form the input to the first wFM layer and let
the output be denoted by M1, and C and M1 be the inputs
of the second wFM layer whose output is denoted by M2.
The homogeneous coordinates of the intersection of any two
medians is given by cosec(A) : cosec(B) : cosec(C). In [59],
Coxter (and Section 5 of [60]) showed that this point of the
intersection is a triangle center. Let the triangle center be
denoted by M , which we assume is the output of a single
wFM layer with inputs A, B and C. Then, M lies on the
geodesic between M1 and C. Thus, M can be expressed as
wFM of M1 and C for some weight. This proves that the two
wFM layers can be replaced by a single wFM layer. �

Fig. 5. Homogeneous coordinates for manifolds with constant sectional
curvature K is given by sing(ha) : sing(hb) : sing(hc), where sing(x) =
x, sin(x) and sinh(x) for K = 0, 1 and −1 respectively (figure borrowed
from [59]).

Conjecture 1. The multi-layer ManifoldNet is not equivalent to
the single layer Manifold-Net for data on a Riemannian manifold
M with non-constant sectional curvature, i.e., let g(A,B,C;w)
be a 1-layer manifoldNet with an input of three points A,B,C ∈
M. Let f(A,B,C;u) denote a 2-layer manifoldNet with a weight
vector u. Then, there exists a u such that, for all w there exist
A′, B′, C ′ ∈M for which g(A′, B′, C ′;w) 6= f(A′, B′, C ′;u).

First we present a simple example construction of a two-
layer ManifoldNet that cannot be collapsed to a single layer
network. Provided one accepts the numerical calculations
are free of any significant round-off error, this demonstrates
that a two-layer ManifoldNet cannot always collapse to a
one-layer ManifoldNet. In fact, we go on to show more:
given that small perturbations of this example will remain
examples of two-layer ManifoldNets that cannot collapse,
our example demonstrates that there are infinitely many
two-layer ManifoldNets that cannot collapse to one-layer
ManifoldNets.

In the numerical example we consider three arbitrarily
chosen points on SO(3) within a geodesic ball of radius
equal to the injectivity radius of SO(3).

Numerical Example Construction: Here we use the Lie
group of rotation matrices, more specifically SO(3) (manifold
of 3 × 3 rotation matrices) with the bi-invariant metric.
Consider the following three points (matrices) in SO(3).

A =
[
0.7725 −0.6266 0.1023
0.5086 0.5142 −0.6905
0.3800 0.5855 0.7160

]
, B=

[ 0.8613 −0.2260 0.4549
0.4974 0.5568 −0.6651
−0.1029 0.7992 0.5920

]
C =

[
0.2817 0.4850 0.8278
−0.8496 0.5269 −0.0195
−0.4457 −0.6978 0.5605

]
These three points lie within the injectivity radius of SO(3),
hence the wFM of these points will exist and be unique. We
first input these matrices through a 2-layer ManifoldNet



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 14

f : SO(3)3 → SO(3) with a uniform set of weights denoted
by u0 i.e., u = u0. Explicitly, we compute

f(A,B,C;u0) = FM({FM({A,B}),FM({B,C})})

Note that since the weights are uniform, the wFM is just
an FM. Next we find a weight vector w0 = {w1, w2, w3}
such that the output of a single layer wFM denoted by, g :
SO(3)3 → SO(3), is equal to f(A,B,C;u0), i.e. we want to
find w0 such that

g(A,B,C;w0) =wFM({A,B,C}, {w1, w2, w3})
=f(A,B,C;u0)

For the points A,B,C from above, we numerically find the
weight vector w0 = {0.237599, 0.514730, 0.247671}.

Now, we will show that there exist A′, B′, C ′ ∈ SO(3)
such that f(A′, B′, C ′;u0) 6= g(A′, B′, C ′;w0). We go one
step further and show that on the average f 6= g. Hence, we
generate 500 random triplets of points in SO(3) and input
them all to both f and g, then compute the geodesic distance
between the outputs. Explicitly, we empirically estimate

L = EA′,B′,C′∈B [d(f(A′, B′, C ′), g(A′, B′, C ′)]

where B ⊂ SO(3)3 is a geodesic ball of radius less than
the injectivity radius of SO(3). We find L ≈ 0.00531 > 0,
showing that f(·, ·, ·;w0) 6= g(·, ·, ·;u0) . We provide a script
to reproduce these results 4.

In the above construction, by the continuity argument,
every small perturbation of one or more of the three points
(A,B,C) will generate another example, thus yielding
an infinite number of such examples. Further, via similar
constructions to the above, the non-collapsibility conclusion
can be drawn for other non-constant sectional curvature
manifolds as well.

4. https://github.com/cvgmi/manifoldnet-non-collapse Non-
collapsability example
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