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Abstract

Deep convolutional neural networks are hindered by

training instability and feature redundancy towards further

performance improvement. A promising solution is to im-

pose orthogonality on convolutional filters.

We develop an efficient approach to impose filter or-

thogonality on a convolutional layer based on the doubly

block-Toeplitz matrix representation of the convolutional

kernel, instead of the common kernel orthogonality ap-

proach, which we show is only necessary but not sufficient

for ensuring orthogonal convolutions.

Our proposed orthogonal convolution requires no ad-

ditional parameters and little computational overhead. It

consistently outperforms the kernel orthogonality alterna-

tive on a wide range of tasks such as image classification

and inpainting under supervised, semi-supervised and un-

supervised settings. It learns more diverse and expressive

features with better training stability, robustness, and gen-

eralization. Our code is publicly available.

1. Introduction

While convolutional neural networks (CNN) are widely

successful [36, 14, 50], several caveats exist with deep nets:

over parameterization or under utilization of model capacity

[21, 12], exploding or vanishing gradients [7, 17], growth in

saddle points [13], and shifts in feature statistics [31].

We observe that convolutional filters learned in deeper

layers are not only highly correlated and thus redundant

(Fig.1a), but each layer also has a long-tailed spectrum as

a linear operator (Fig.1b), contributing to unstable training

performance from exploding or vanishing gradients.

We propose orthogonal CNN (OCNN), where a convo-

lutional layer is regularized with orthogonality constraints

during training. When filters are learned to be as orthog-

onal as possible, they become de-correlated and their filter

responses are no longer redundant, thereby fully utilizing

the model capacity, improving the feature expressiveness

and consequently the task performance.

Indeed, just by regularizing convolutions with our or-

thogonality loss during training, our OCNN can produce a

more uniform spectrum (Fig.1c) and more diverse features
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Figure 1. Our OCNN can remove correlations among filters and

result in consistent performance gain over standard convolution

baseline and alternative kernel orthogonality baseline (kernel orth)

during testing. a) Normalized histograms of pairwise filter simi-

larities of ResNet34 for ImageNet classification show increasing

correlation among standard convolutional filters with depth. b)

A standard convolutional layer has a long-tailed spectrum. While

kernel orthogonality widens the spectrum, our OCNN can produce

a more ideal uniform spectrum. c) Filter similarity (for layer 27 in

a) is reduced most with our OCNN. d) Classification accuracy on

CIFAR100 always increases the most with our OCNN.

Table 1. Summary of experiments and OCNN gains.
Task Metric Gain

Image

Classification

CIFAR100 classification accuracy 3%

ImageNet classification accuracy 1%

semi-supervised learning classification accuracy 3%

Feature

Quality

fine-grained image retrieval kNN classification accuracy 3%

unsupervised image inpainting PSNR 4.3

image generation FID 1.3

Cars196 NMI 1.2

Robustness black box attack attack time 7x less

(Fig.1d), delivering a consistent performance gain with var-

ious network architectures (Fig.1d) and on a variety of tasks

such as image classification, image retrieval, image inpaint-

ing, image generation, and adversarial attacks (Table 1).

Many works have proposed the orthogonality of linear

operations as a type of regularization in training deep neural

networks. Such a regularization improves the stability and

performance of CNNs [5, 57, 3, 4], since it can preserve

energy, make spectrum uniform [61], stabilize the activation

distribution in different network layers [46] and remedy the
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Figure 2. Basic idea of our OCNN. A convolution layer Y =
Conv(K,X) can be formulated as matrix multiplications in two

ways: a) im2col methods [58, 26] retain kernel K and convert in-

put X to patch-matrix X̃ . b) We retain input X and convert K to a

doubly block-Toeplitz matrix K. With X and Y intact, we can di-

rectly analyze the transformation from the input to the output. We

further propose an efficient algorithm for regularizing K towards

orthogonal convolutions and observe improved feature expressive-

ness, task performance and uniformity in K’s spectrum (Fig.1b).

exploding or vanishing gradient issues [1].

Existing works impose orthogonality constraints as ker-

nel orthogonality, whereas ours directly implements orthog-

onal convolutions, based on an entirely different formula-

tion of a convolution layer as a linear operator.

Orthogonality for a convolution layer Y = Conv(K,X)
can be introduced in two different forms (Fig.2).

1. Kernel orthogonality methods [57, 3, 4] view convo-

lution as multiplication between the kernel matrix K

and the im2col [58, 26] matrix X̃ , i.e. Y = KX̃ . The

orthogonality is enforced by penalizing the disparity

between the Gram matrix of kernel K and the identity

matrix, i.e. ‖KKT − I‖. However, the construction of

X̃ from input X is also a linear operation X̃ = QX ,

and Q has a highly nonuniform spectrum.

2. Orthogonal convolution keeps the input X and the

output Y intact by connecting them with a doubly

block-Toeplitz (DBT) matrix K of filter K, i.e. Y =
KX and enforces the orthogonality of K directly. We

can thus directly analyze the linear transformation

properties between the input X and the output Y .

Existing works on CNNs adopt kernel orthogonality, due to

its direct filter representation.

We will prove that kernel orthogonality is in fact only

necessary but not sufficient for orthogonal convolutions.

Consequently, the spectrum of a convolutional layer is still

non-uniform and exhibits a wide variation even when the

kernel matrix K itself is orthogonal (Fig.1b).

More recent works propose to improve the kernel or-

thogonality by normalizing spectral norms [40], regulariz-

ing mutual coherence [5], and penalizing off-diagonal ele-

ments [8]. Despite the improved stability and performance,

the orthogonality of K is insufficient to make a linear con-

volutional layer orthogonal among its filters.

In contrast, we adopt the DBT matrix form, and regular-

ize ‖Conv(K,K)−Ir‖ instead. While the kernel K is indi-

rectly represented in the DBT matrix K, the representation

of input X and output Y is intact and thus the orthogonality

property of their transformation can be directly enforced.

We will show that our regularization enforces orthogo-

nal convolutions more effectively than kernel orthogonality

methods, and we further develop a very efficient approach

for our OCNN regularization.

To summarize, we make the following contributions.

1. We provide an equivalence condition for orthogonal

convolutions and develop efficient algorithms to im-

plement orthogonal convolutions for CNNs.

2. With no additional parameters and little computational

overhead, our OCNN consistently outperforms other

orthogonal regularizers on image classification, gener-

ation, retrieval, to inpainting under supervised, semi-

supervised, and unsupervised settings.

Better feature expressiveness, reduced feature correlation,

more uniform spectrum, and enhanced adversarial robust-

ness may underlie our performance gain.

2. Related Works

Im2col-based Convolutions. The im2col method [58, 26]

has been widely used in deep learning as it enables efficient

GPU computation. It transforms the convolution into a Gen-

eral Matrix to Matrix Multiplication (GEMM) problem.

Fig.2a illustrates the procedure. a) Given an input X , we

first construct a new input-patch-matrix X̃ ∈ RCk2
×H′W ′

by copying patches from the input and unrolling them into

columns of this intermediate matrix. b) The kernel-patch-

matrix K ∈ RM×Ck2

can then be constructed by reshaping

the original kernel tensor. Here we use the same notation for

simplicity. c) We can calculate the output Y = KX̃ where

we reshape Y back to the tensor of size M ×H ×W – the

desired output of the convolution.

The orthogonal kernel regularization enforces the kernel

K ∈ RM×Ck2

to be orthogonal. Specifically, if M ≤ Ck2,

row orthogonal regularizer is Lkorth-row = ‖KKT − I‖F
where I is the identity matrix. Otherwise, column orthogo-

nal may be achieved by Lkorth-col = ‖KTK − I‖F .

Kernel Orthogonality in Neural Networks. Orthogonal

kernels help alleviate gradient vanishing or exploding prob-
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lems in recurrent neural networks (RNNs) [15, 56, 10, 1, 54,

45]. The effect of soft versus hard orthogonal constraints

on the performance of RNNs is discussed in [54]. A cheap

orthogonal constraint based on a parameterization from ex-

ponential maps is proposed in [10].

Orthogonal kernels are also shown to stabilize the train-

ing of CNNs [46] and make more efficient optimization [5].

Orthogonal weight initialization is proposed in [48, 39];

Utilizing the norm-preserving property of orthogonal ma-

trices, it is similar to the effect of batch normalization

[31]. However, the orthogonality may not sustain as the

training proceeds [48]. To ensure the orthogonal weights

through the whole training, Stiefel manifold-based opti-

mization methods are used in [22, 43, 30], and further ex-

tended to convolutional layers in [43].

Recent works relax and extend the exact orthogonal

weights in CNNs. Xie et al. enforce the Gram matrix

of the weight matrix to be close to identity under Frobe-

nius norm [57] . Bansal et al. further utilize mutual co-

herence and restricted isometry property [5]. It has been

observed that orthogonal regularization helps improve the

performance of image generation in generative adversarial

networks (GANs) [8, 9, 40].

All these mentioned works adopt kernel orthogonality

for convolutions. Sedghi et al. utilize the DBT matrix to

analyze singular values of convolutional layers but do not

consider orthogonality [49].

Feature Redundancy. Optimized CNNs are known to have

significant redundancy between different filters and feature

channels [32, 29]. Many works use the redundancy to com-

press or speed up networks [20, 25, 29]. The highly nonuni-

form spectrum may contribute to the redundancy in CNNs.

To overcome the redundancy by improving feature di-

versity, multi-attention [60], diversity loss [38], and orthog-

onality regularization [11] have been proposed.

Other Ways to Stabilize CNN Training. To address unsta-

ble gradient and co-variate shift problems, various methods

have been proposed: Initialize each layer with near-constant

variances [17, 23]; Use batch normalization to reduce inter-

nal covariate shifts [31]; Reparameterize the weight vectors

and decouple their lengths from their directions [47]; Use

layer normalization with the mean and variance computed

from all of the summed inputs to the neurons [2]; Use a

gradient norm clipping strategy to deal with exploding gra-

dients and a soft constraint for vanishing gradients [45].

3. Orthogonal Convolution

As we mentioned earlier, convolution can be viewed as

efficient matrix-vector multiplications, where matrix K is

generated by a kernel K. In order to stabilize the spec-

trum of K, we add orthogonal convolutional regularization

to CNNs, which is a stronger condition than kernel orthogo-
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Figure 3. Convolutions based on the doubly block Toeplitz matrix.

We first flatten X to a vector x, and then convert weight tensor

K ∈ RM×C×k×k as Toeplitz matrix K ∈ R(MH
′
W

′)×(CHW ).

The output y = Kx. We can obtain the desired output Y ∈

RM×H
′
×W

′

by reshaping y. The example has input size C ×

4× 4, kernel size M × C × 2× 2 and stride 1.

nality. First, we discuss the view of convolution as a matrix-

vector multiplication in detail. Then fast algorithms for con-

straining row and column orthogonality in convolutions are

proposed. In this work, we focus on the 2D convolution

case, but concepts and conditions generalize to other cases.

3.1. Convolution as a Matrix­Vector Multiplication

For a convolution layer with input tensor X ∈
RC×H×W and kernel K ∈ RM×C×k×k, we denote the

convolution’s output tensor Y = Conv(K,X), where Y ∈
RM×H′

×W ′

. We can further view K as M different fil-

ters, {Ki ∈ RC×k×k}. Since convolution is linear, we can

rewrite Conv(K,X) in a matrix-vector form:

Y = Conv(K,X) ⇔ y = Kx (1)

where x is X flattened to a vector. Note that we adopt rig-

orous notations here while x and X are not distinguished

previously. Each row of K has non-zero entries correspond-

ing to a particular filter Ki at a particular spatial location.

As a result, K can be constructed as a doubly block-Toeplitz

(DBT) matrix K ∈ R(MH′W ′)×(CHW ) from kernel tensor

K ∈ RM×C×k×k.

We can obtain the output tensor Y by reshaping vector

y back to the tensor form. Fig.3 depicts an example of a

convolution based on DBT matrix, where we have input size

of C × 4× 4, kernel size of M × C × 2× 2 and stride 1.

3.2. Convolutional Orthogonality

Depending on the configuration of each layer, the cor-

responding matrix K ∈ R(MH′W ′)×(CHW ) may be a fat
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matrix (MH ′W ′ ≤ CHW ) or a tall matrix (MH ′W ′ >

CHW ). In either case, we want to regularize the spectrum

of K to be uniform. In the fat matrix case, the uniform spec-

trum requires a row orthogonal convolution and the tall ma-

trix case requires a column orthogonal convolution where

K is a normalized frame [33] and preserves the norm.

In theory, we can implement the doubly block-Toeplitz

matrix K and enforce the orthogonality condition in a brute

force fashion. However, since K is highly structured and

sparse, a much more efficient algorithm exists. In the fol-

lowing, we show the equivalent conditions to the row and

column orthogonality, which can be easily computed.

Row Orthogonality. As we mentioned earlier, each row of

K corresponds to a filter Ki at a particular spatial location

(h′, w′) flattened to a vector, denoted as Kih′w′,• ∈ RCHW .

The row orthogonality condition is:

〈Kih′

1
w′

1
,• ,Kjh′

2
w′

2
,•〉 =

{
1, (i, h′

1, w
′

1) = (j, h′

2, w
′

2)

0, otherwise
(2)

In practice, we do not need to check pairs when the cor-

responding filter patches do not overlap. It is clear that

〈Kih′

1
w′

1
,• ,Kjh′

2
w′

2
,•〉 = 0 if either |h1 − h2| ≥ k or

|w1 −w2| ≥ k, since the two flattened vectors have no sup-

port overlap and thus have a zero inner product. So we only

need to check Condition 2 where |h1 − h2|, |w1 −w2| < k.

Due to the spatial symmetry, we can choose fixed h1, w1

and only vary i, j, h2, w2, where |h1 − h2|, |w1 − w2| < k.

Fig.4 shows examples of the region of overlapping filter

patches. For a convolution, a reader can verify that if the

kernel size is k and the stride is S, the region to check or-

thogonality can be realized by the original convolution with

padding: P = ⌊k−1
S ⌋ · S. Now we have an equivalent con-

dition to Condition 2 as the following self-convolution:

Conv(K,K, padding = P, stride = S) = Ir0 (3)

where Ir0 ∈ RM×M×(2P/S+1)×(2P/S+1) is a tensor, which

has zeros entries except for center M × M entries as an

identity matrix. Minimizing the difference between Z =
Conv(K,K, padding = P, stride = S) and Ir0 gives us a

near row-orthogonal convolution in terms of DBT matrix K.

Column Orthogonality. We use tensor Ei,h,w ∈
RC×H×W to denote an input tensor, which has all zero

except an 1 entry at the ith input channel, spatial location

(h,w). Let’s denote eihw ∈ RCHW as the flattened vector

of Ei,h,w. We can obtain a column K •,ihw of K by multiply

K and vector eihw:

K •,ihw = Keihw = Conv(K,Ei,h,w) (4)

here we slightly abuse the equality notation as the reshaping

region to check region to check

re
g
io

n
 t

o
 c

h
ec

k

(a) kernel size=3, stride=1 (b) kernel size=4, stride=2

Figure 4. The spatial region to check for row orthogonality. It

is only necessary to check overlapping filter patches for the row

orthogonality condition. We show two example cases :stride S =
1 with kernel size k = 3 and stride S = 2 with kernel size k = 4.

In both examples, the orange patch is the center patch, and the red

border is the region of overlapping patches. For example, pink and

purple patches fall into the red region and overlap with the center

region; blue patches are not fully inside the red region and they do

not overlap with the orange ones. We can use padding to obtain

the overlapping regions.

is easily understood. Column orthogonality condition is:

〈K •,ih1w1
,K •,jh2w2

〉 =

{
1, (i, h1, w1) = (j, h2, w2)

0, otherwise
(5)

Similar to the row orthogonality, since the spatial size of

K is only k, Condition 5 only needs to be checked in a local

region where there is spatial overlap between K •,ih1w1
and

K •,jh2w2
. For the stride 1 convolution case, there exists a

much simpler condition equivalent to Condition 5:

Conv(KT ,KT , padding = k − 1, stride = 1) = Ic0 (6)

where KT is the input-output transposed K, i.e. KT ∈
RC×M×k×k. Ic0 ∈ RC×C×(2k−1)×(2k−1) has all zeros

except for the center C × C entries as an identity matrix.

Comparison to Kernel Orthogonality. The kernel row-

and column-orthogonality condition can be written in the

following convolution form respectively:

{
Conv(K,K, padding = 0) = Ir0

Conv(KT ,KT , padding = 0) = Ic0
(7)

where tensor Ir0 ∈ RM×M×1×1, Ic0 ∈ RC×C×1×1 are

both equivalent to identity matrices1.

It’s obvious that the kernel orthogonality conditions 7 are

necessary but not sufficient conditions for the orthogonal

convolution conditions 3,6 in general. For the special case

when convolution stride is k, they are equivalent.

Row-Column Orthogonality Equivalence. The lemma

below unifies the row orthogonality condition 2 and column

1Since there is only 1 spatial location.
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orthogonality condition 5. This lemma [37] gives a uniform

convolution orthogonality independent of the actual shape

of K and provides a unique regularization: minK Lorth =
‖Z − Ir0‖

2
F , which only depends on Condition 3.

Lemma 1. The row orthogonality and column orthogonal-

ity are equivalent in the MSE sense, i.e. ‖KKT − I‖2F =
‖KTK − I ′‖2F + U , where U is a constant.

we leave the proof to Section D of supplementary materials.

Orthogonal Regularization in CNNs. We will add addi-

tional soft orthogonal convolution regularization loss to the

final loss of CNNs, so that the task objective and orthogo-

nality regularization can be simultaneously achieved. De-

noting λ > 0 as the weight of the orthogonal regularization

loss, the final loss is:

L = Ltask + λLorth (8)

where Ltask is the task loss, e.g. softmax loss in image clas-

sification task, Lorth is the orthogonal regularization loss.

4. Experiments

We conduct 3 sets of experiments to evaluate OCNNs.

The first set benchmarks our approach on image classifi-

cation datasets CIFAR100 and ImageNet. The second set

benchmarks the performance under semi-supervised set-

tings and focuses on qualities of learned features. In terms

of high-level visual features, we experiment on the fine-

grained bird image retrieval. For low-level visual features,

we experiment on unsupervised image inpainting. Addi-

tionally, we compare visual feature qualities in image gen-

eration tasks. The third set of experiments focuses on the

robustness of OCNN under adversarial attacks. We analyze

OCNNs in terms of DBT matrix K’s spectrum, feature sim-

ilarity, hyperparameter tuning and space/time complexity.

4.1. Image Classification on CIFAR100

The key novelty of our approach is the orthogonal

regularization term on convolution layers. We compare

both conv-orthogonal and kernel-orthogonal regularizers on

CIFAR-100 [35] and evaluate the image classification per-

formance using ResNet [24] and WideResNet [59] as back-

bone network. The kernel-orthogonality and our conv-

orthogonality are added as additional regularization terms,

without modifying the network architecture. The number of

parameters of the network hence does not change.

ResNet and Row Orthogonality. Though we have derived

a unified orthogonal convolution regularizer, we would like

to benchmark its effectiveness in two different settings.

Convolutional layers in Resnet [24] usually preserve or re-

duce the dimension from input to output, i.e. a DBT matrix

K would be a square or fat matrix. In this case, our regu-

larizer leads to row orthogonality condition. Table 2 shows

top-1 classification accuracies on CIFAR100. Our approach

achieves 78.1%, 78.7%, and 79.5% image classification ac-

curacies with ResNet18, ResNet34 and ResNet50, respec-

tively. OCNN outperforms the baseline by 3%, 2%, and 1%

over baseline, as well as 2%, 1%, and 1% over the kernel

orthogonal regularization.

WideResNet and Column Orthogonality. Unlike ResNet,

WideResNet [59] has more channels and some tall DBT

matrices K. When the corresponding DBT matrix K of a

convolutional layer increase dimensionality from the input

to the output, OCNN leads to the column orthogonality con-

dition. Table 3 reports the performance of column orthogo-

nal regularizers with backbone model of WideResNet28 on

CIFAR100. Our OCNNs achieves 3% and 1% gain over

baseline and kernel orthogonal regularizers.

Table 2. Top-1 accuracies on CIFAR100. Our OCNN outperforms

baselines and the SOTA orthogonal regularizations.

ResNet18 ResNet34 ResNet50

baseline [24] 75.3 76.7 78.5

kernel orthogonality [57] 76.5 77.5 78.8

OCNN (ours) 78.1 78.7 79.5

Table 3. WideResNet [59] performance. We observe improved

performance of OCNNs.
WideResNet [59] Kernel orth [57] OCNN

Acc. 77.0 79.3 80.1

4.2. Image Classification on ImageNet

We add conv-orthogonal regularizers to the backbone

model ResNet34 on ImageNet [14], and compare our

method with state-of-the-art orthogonal regularizations.

Experimental Settings. We follow the standard training

and evaluation protocols of ResNet34. In particular, the to-

tal epoch of the training is 90. We start the learning rate with

0.1, with decreasing by 0.1 every 30 epochs and weight de-

cay 1e-4. The weight λ of the regularization loss is 0.01,

the model is trained using SGD with momentum 0.9, and

the batch size is 256.

Comparisons. Our method is compared with hard orthog-

onality OMDSM [30], kernel orthogonality [57] and spec-

tral restricted isometry property regularization [5]. Table 4

shows the Top-1 and Top-5 accuracies on ImageNet. With-

out additional modification to the backbone model, OCNN

achieves 25.87% top-5 and 7.89% top-1 error. The pro-

posed method outperforms the plain baseline, as well as

other orthogonal regularizations by 1%.

4.3. Semi­supervised Learning

A general regularizer should provide benefit to a vari-

ety of tasks. A common scenario that benefits from regu-

larization is the semi-supervised learning: a large amount
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Table 4. Top-1 and Top-5 errors on ImageNet [14] with ResNet34

[24]. Our conv-orthogonal regularization outperforms baselines

and SOTA orthogonal regularizations.

Top-1 error Top-5 error

ResNet34 (baseline) [24] 26.70 8.58

OMDSM [30] 26.88 8.89

kernel orthogonality [57] 26.68 8.43

SRIP [5] 26.10 8.32

OCNN (ours) 25.87 7.89

Query Retrievals Query Retrievals 

Figure 5. Image retrieval results on CUB-200 Birds Dataset. The

model (ResNet34) is trained on ImageNet only. First row shows

our OCNN results, while the second row shows the baseline model

results. Ours achieves 2% and 3% top-1 and top-5 k-nearest neigh-

bor classification gain.

of data with limited labels. We randomly choose a sub-

set of CIFAR100 as labeled and treat the rest as unlabeled.

The orthogonal regularization is added the baseline model

ResNet18 without any additional modifications. The clas-

sification performance is evaluated on the entire validation

set for all different labeled subsets.

Varying the proportion of labeled subset from 10% to

80% of the entire dataset, OCNN is compared with the

kernel-orthogonal regularization and the results are shown

in Table 5. OCNN constantly outperforms the baseline by

2% - 3% under different fractions of labeled data.

Table 5. Top-1 accuracies on CIFAR100 with different fractions of

labeled data. OCNNs are consistently better.

% of training data 10% 20% 40% 60% 80% 100%

ResNet18 [24] 31.2 47.9 60.9 66.6 69.1 75.3

kernel orthogonality [57] 33.7 50.5 63.0 68.8 70.9 76.5

Conv-orthogonality 34.5 51.0 63.5 69.2 71.5 78.1

Our gain 3.3 3.1 2.6 2.6 2.4 2.8

4.4. Fine­grained Image Retrieval

We conduct fine-grained image retrieval experiments on

CUB-200 bird dataset [55] to understand high-level visual

feature qualities of OCNNs. Specifically, we directly use

the ResNet34 model trained on ImageNet (from Section

4.2) to obtain features of images in CUB-200, without fur-

ther training on the dataset. We observed improved re-

sults with OCNNs (Fig.5). With conv-orthogonal regulariz-

Corrupted Image (input) Deep image prior OCNN (ours) Original image (GT)

Figure 6. Image inpainting results compared with deep image prior

[52]. Top – comparison on text inpainting example. Bottom –

comparison on inpainting 50% of missing pixels. In both cases,

our approach outperforms previous methods.

ers, the top-1 k-nearest-neighbor classification accuracy im-

proves from 25.1% to 27.0%, and top-5 k-nearest-neighbor

classification accuracy improves from 39.4% to 42.3%.

4.5. Unsupervised Image Inpainting

To further assess the generalization capacity of OCNNs,

we add the regularization term to the new task of unsuper-

vised inpainting. In image inpainting, one is given an image

X0 with missing pixels in correspondence of a binary mask

M ∈ {0, 1}C×H×W of the same size of the image. The

goal is to reconstruct the original image X by recovering

missing pixels:

minE(X;X0) = min ‖(X −X0)⊙M‖2F (9)

Deep image prior (DIP) [52] proposed to use the prior

implicitly captured by the choice of a particular generator

network fθ with parameter θ. Specifically, given a code

vector/ tensor z, they used CNNs as a parameterization X =
fθ(z). The reconstruction goal in Eqn.9 can be written as:

min
θ

‖(fθ(z)−X0)⊙M‖2F (10)

The network can be optimized without training data to

recover X . We further add our conv-orthogonal regular-

ization as an additional prior to the reconstruction goal, to

validate if the proposed regularization helps the inpainting:

min
θ

‖(fθ(z)−X0)⊙M‖2F + λLorth(θ) (11)

In the first example (Fig.6, top), the inpainting is used

to remove text overlaid on an image. Compared with DIP

[52], our orthogonal regularization leads to improved recon-

struction result of details, especially for the smoothed face

outline and finer teeth reconstruction.

The second example (Fig.6, bottom) considers inpaint-

ing with masks randomly sampled according to a binary
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Table 6. Quantitative comparisons on the standard inpainting dataset [27]. Our conv-orthogonality outperforms the SOTA methods.

Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage

Convolutional dictionary learning [44] 28.14 31.44 34.58 35.04 31.11 27.90 31.18 31.34 32.35 31.92 28.05

Deep image prior (DIP) [52] 32.22 33.06 39.16 36.16 33.05 29.8 32.52 32.84 32.77 32.20 34.54

DIP + kernel orthogonality [57] 34.88 34.93 38.53 37.66 34.58 33.18 33.71 34.40 35.98 32.93 36.99

DIP + conv-orthogonality (ours) 38.12 35.15 41.73 39.76 37.75 38.21 35.88 36.87 39.89 33.57 38.48
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Figure 7. OCNNs have faster convergence for GANs. For IS (left)

and FID (right), OCNNs consistently outperforms CNNs [18] at

every epoch.

Bernoulli distribution. Following the procedure in [44, 52],

we sample a mask to randomly drop 50% of pixels. For a

fair comparison, all the methods adopt the same mask. We

observe improved background quality, as well as finer re-

construction of the texture of butterfly wings.

We report quantitative PSNR comparisons on the stan-

dard data set [26] in Table 6. OCNN outperforms previous

state-of-the-art DIP [52] and convolutional sparse coding

[44]. We also observe performance gain compared to ker-

nel orthogonal regularizations.

4.6. Image Generation

Orthogonal regularizers have shown great success in im-

proving the stability and performance of GANs [9, 40, 8].

We analyze the influence of our convolutional orthogonal

regularizer on GANs with the best architecture reported in

[18]. Training takes 320 epochs with OCNN regularizer

applied to both the generator and discriminator. The regu-

larizer loss λ is set to 0.01 and all of other settings retain as

standard default.

Table 7. Inception Score and Fréchet Inception Distance compar-

ison on CIFAR10. Our OCNN outperforms the baseline [18] by

0.3 IS and 1.3 FID.

IS FID

PixelCNN [53] 4.60 65.93

PixelIQN [42] 5.29 49.46

EBM [16] 6.78 38.20

SNGAN [40] 8.22 21.70

BigGAN [8] 9.22 14.73

AutoGAN [18] 8.32 13.01

OCNN (ours) 8.63 11.75

The reported model is evaluated 5 times with 50k im-

ages each. We achieve 8.63 ± 0.007 inception score (IS)

and 11.75 ± 0.04 Fréchet inception distance (FID) (Table

7), outperforming the baseline and achieving the state-of-

the-art performance. Additionally, we observe faster con-
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Figure 8. Model accuracy v.s. attack time and necessary attack

queries. With our conv-orthogonal regularizer, it takes 7x time

and 1.7x necessary attack queries to achieve 90% successful attack

rate. Note that baseline ends at accuracy 3.5% while ours ends at

5.5% with the same iteration.

vergence of GANs with our regularizer (Fig.7).

4.7. Robustness under Attack

The uniform spectrum of K makes each convolution

layer approximately an 1-Lipschitz function. Given a small

perturbation to input, ∆x, the change of output ∆y is

bounded to be low. Therefore, the model enjoys robustness

under attack. The experiments show that it is much harder

to search for adversarial examples.

Table 8. Attack time and number of necessary attack queries

needed for 90% successful attack rate.

Attack time/s # necessary attack queries

ResNet18 [24] 19.3 27k

OCNN (ours) 136.7 46k

We adopt the simple black box attack [19] to evaluate

the robustness of baseline and our OCNN with ResNet18

[24] backbone architecture trained on CIFAR100. The at-

tack basically samples around the input image and finds a

“direction” to rapidly decrease the classification confidence

of the network by manipulating the input. We only evalu-

ate on the correctly classified test images. The maximum

iteration is 10,000 with pixel attack. All other settings are

retained. We report the attack time and number of necessary

attack queries for a specific attack successful rate.

It takes about 7x time and 1.7x attack queries to attack

our OCNN, compared with the baseline (Fig.8 and Table

8). Additionally, after the same iterations of the attack, our

model outperforms the baseline by 2%.

To achieve the same attack rate, baseline models need

more necessary attack queries, and searching for such

queries is nontrivial and time consuming. This may account

for the longer attack time of the OCNN.
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4.8. Analysis

To understand how the conv-orthogonal regularization

help improve the performance of CNNs, we analyze several

aspects of OCNNs. First, we analyze the spectrum of the

DBT matrix K to understand how it helps relieve gradient

vanishing/exploding. We then analyze the feature similarity

of OCNNs, followed by the influence of the weight λ of the

regularization term. Finally, the time and space complexity

of OCNNs is analyzed.

Spectrum of the DBT Kernel Matrix K. For a convolution

Y = KX , we analyze the spectrum of K to understand

the properties of the convolution. We analyze the spectrum

of K ∈ R64×128×3×3 of the first convolutional layer of

the third convolutional block of ResNet18 network trained

on CIFAR100. For fast computation, we use input of size

64× 16× 16, and solve all the singular values of K.

As in Fig.1(b), the spectrum of plain models vanishes

rapidly, and may cause gradient vanishing problems. Ker-

nel orthogonality helps the spectrum decrease slower. With

our conv-orthogonal regularization, the spectrum almost al-

ways stays at 1. The uniform spectrum perserves norm and

information between convolution layers.

Filter Similarity. Orthogonality makes off-diagonal ele-

ments to be 0. This means that for any two channels of a

convolution layer, correlations should be relatively small.

This can reduce the filter similarity and redundancy across

different channels.

We use guided back-propagation patterns [51] on images

from the validation set of ImageNet [14] dataset to inves-

tigate filter similarities. Guided back-propagation patterns

visualize the gradient of a particular neuron with respect to

the input image X ∈ RC×H×W . Specifically for a layer

of M channels, the combination of flattened guided back-

propagation patterns were denoted as G ∈ RM×CWH .

The correlation matrix corr(G) over different channels of

this layer is (diag(KGG))
−

1

2KGG(diag(KGG))
−

1

2 , where

KGG = 1
M [(G − E[G])(G − E[G])T ] is the covariance

matrix. We plot the histogram of off-diagonal elements of

corr(G) of all validation images.

Fig.1(a) depicts the normalized histogram of pairwise fil-

ter similarities of plain ResNet34. As number of channels

increases with depth from 128 to 512, the curve shifts right

and becomes far narrower, i.e., more filters become similar.

Fig.1(c) depicts the histogram of filter similarities at layer

27 of ResNet34 with different regularizers. OCNNs make

the curve shifts left and becomes wider, indicating its ability

to enhance filter diversity and decrease feature redundancy.

Hyper-parameter Analysis. We analyze the Influence of

the weight λ of the orthogonality loss. As discussed earlier,

we achieve the “soft orthogonality” by add additional loss

with weight λ to the network. Fig.9 plots the image clas-

sification performance of CIFAR100 with backbone model

77.8

78.1

77.9

77.6

77.5

77.7

77.9

78.1

78.3

0.05 0.1 0.5 1

Figure 9. CIFAR100 classification accuracy (%) with different

weight λ of the regularization loss. With backbone model

ResNet18, we achieve the highest performance at λ = 0.1.

ResNet18 under λ ranging from 0.05 to 1.0. Our approach

achieves the best classification accuracy when λ = 0.1.

Space and Time Complexity. We analyze the space and

time complexity in Table 9. We test the ResNet34 [24]

backbone model on ImageNet [14] with a single NVIDIA

GeForce GTX 1080 Ti GPU and batch size 256.

The number of parameters and the test time of the CNN

do not change since the regularizer is an additional loss term

only used during training. With kernel orthogonal regular-

izers, the training time increase 3%; with conv-orthogonal

regularizers, the training time increase 9%.

Table 9. Model size and training/ test time on ImageNet [14].

ResNet34 [24] kernel-orth [57] OCNN

# Params. 21.8M same same

Training time (min/epoch) 49.5 51.0 54.1

Test time (min/epoch) 1.5 same same

5. Summary

We develop an efficient OCNN approach to impose a fil-

ter orthogonality condition on a convolution layer based on

the doubly block-Toeplitz matrix representation of the con-

volutional kernel, as opposed to the commonly adopted ker-

nel orthogonality approaches. We show that kernel orthog-

onality [5, 30] is necessary but not sufficient for ensuring

orthogonal convolutions.

Our OCNN requires no additional parameters and lit-

tle computational overhead, consistently outperforming the

state-of-the-art alternatives on a wide range of tasks such as

image classification and inpainting under supervised, semi-

supervised and unsupervised settings. It learns more diverse

and expressive features with better training stability, robust-

ness, and generalization.
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