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SurReal: Complex-Valued Learning as Principled
Transformations on a Scaling and Rotation Manifold

Rudrasis Chakraborty Yifei Xing Stella X. Yu

Abstract—Complex-valued data is ubiquitous in signal and im-
age processing applications, and complex-valued representations
in deep learning have appealing theoretical properties. While
these aspects have long been recognized, complex-valued deep
learning continues to lag far behind its real-valued counterpart.

We propose a principled geometric approach to complex-
valued deep learning. Complex-valued data could often be
subject to arbitrary complex-valued scaling; as a result, real
and imaginary components could co-vary. Instead of treating
complex values as two independent channels of real values, we
recognize their underlying geometry: We model the space of
complex numbers as a product manifold of non-zero scaling
and planar rotations. Arbitrary complex-valued scaling naturally
becomes a group of transitive actions on this manifold.

We propose to extend the property instead of the form of real-
valued functions to the complex domain. We define convolution as
weighted Fréchet mean on the manifold that is equivariant to the
group of scaling/rotation actions, and define distance transform
on the manifold that is invariant to the action group. The manifold
perspective also allows us to define nonlinear activation functions
such as tangent ReLU and G-transport, as well as residual
connections on the manifold-valued data.

We dub our model SurReal, as our experiments on MSTAR
and RadioML deliver high performance with only a fractional
size of real-valued and complex-valued baseline models.

Index Terms—complex value, Riemannian manifold, Fréchet
mean, equivariance, invariance.

I. INTRODUCTION

WHILE deep learning has been widely successful in
computer vision and machine learning [LeCun et al.,

1998, Bengio et al., 2009, Krizhevsky et al., 2012, He et al.,
2016, LeCun et al., 2015], most techniques are only applicable
to data that lie in a vector space. How to handle manifold-
valued data and incorporate non-Euclidean geometry into deep
learning has become an active topic of research [Cohen and
Welling, 2016, Chakraborty et al., 2018a,b, Esteves et al.,
2017, Bronstein et al., 2017, Chakraborty et al., 2018c].

We are interested in extending deep learning to complex-
valued data, e.g., synthetic aperture radar (SAR) images in
remote sensing, magnetic resonance (MR) images in medical
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imaging, or radio frequency (RF) signals in electrical engineer-
ing. For such naturally complex-valued data, both the size (or
magnitude) and the phase of a complex-valued measurement
contain useful information. For example, in SAR images, the
magnitude encodes the amount of energy, whereas the phase
variation indicates the object material and shape boundaries.

Complex-valued data could also arise from the more infor-
mative complex-valued representation of naturally real-valued
data. The most notable examples are the Fourier spectrum
and spectrum-based computer vision techniques ranging from
steerable filters [Freeman and Adelson, 1991] to spectral graph
embedding [Maire et al., 2016, Yu, 2011].

The most common complex-valued deep learning approach
is to simply apply real-valued deep learning methodology
to the two-channel representation of complex-valued data
z = x + i · y (where i denotes the imaginary unit): the real
component x and the imaginary component y are regarded as
independent channels of the input.

However, the independence assumption between the real and
imaginary components does not hold in general. For instance,
in MR and SAR images, the pixel intensity value could be sub-
ject to arbitrary scaling by complex number s = mejθ, where
all the pixel values are simultaneously scaled in magnitude by
m and shifted in phase by θ. That is, any measurement z is
simply a representative of a whole class of possible equivalent
measurements {z s : s = mejθ : m > 0,∀θ}. Instead of being
independent of each other, the real and imaginary components
(x, y) of z co-vary in this equivalent class.

The co-variance of the two components of complex-valued
data has not been exploited in complex-valued deep learning.
The common approach to learn a classifier invariant to scaling
is to augment the training data with complex-valued scaling
[Krizhevsky et al., 2012, Dieleman et al., 2015, Wang et al.,
2017]. Such extrinsic data manipulation increases the amount
of the training data and is rather ineffective: It takes a longer
time to train the model, yet the invariance is not guaranteed.

Our goal is to develop the invariance to complex-valued
scaling as an intrinsic property of the neural network itself.
We treat each complex-valued data sample as a point in a
non-Euclidean space that respects the intrinsic geometry of
complex numbers. We propose new convolution and fully
connected layer functions that can achieve equivariance and
invariance to complex-valued scaling.

There has been a long line of works which define convolu-
tion in a non-Euclidean space by treating each data sample as a
function in that space [Worrall et al., 2017, Cohen and Welling,
2016, Cohen et al., 2017, Esteves et al., 2017, Chakraborty
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et al., 2018a, Kondor and Trivedi, 2018].
The challenge for defining such an equivariant convolution

operator in the non-Euclidean space is the lack of a proper
vector space structure. In the Euclidean space, we can move
from one point to another using an element from the group
of translations; the standard convolution is thus equivariant to
the action of the group of translations. However, in the non-
Euclidean space, e.g., a hypersphere, translation equivariance
is no longer meaningful: Translation is not the group to move
from one point to another on a hypersphere, but rotation is.

The concept of equivariance of an operator on a space is
thus intimately related to the transitivity of a group of actions
on that space. We say that a group G acts transitively on
a space if there exists a g ∈ G to go from one point to
another on the space. The group of translations acts transitively
on the Euclidean space, whereas the group of rotations acts
transitively on a hypersphere. The group that transitively acts
on the non-Euclidean space of the complex plane is non-zero
scaling and planar rotations in the complex plane.

The manifold view of convolution as an operator with
equivariance to transitive actions on that space applies to both
the domain and the range of data, e.g., for an image, its pixel
coordinates define the domain, and its pixel intensities define
the range. Here we focus on the range space of data, in order
to extend deep learning to complex-valued images and signals.

Our key insight is to represent a complex number in its polar
form and define a Riemannian manifold on which complex
scaling corresponds to the general transitive action group.
When a data sample lies on a Riemannian manifold, there
are previously established results for deep learning:

• Convolution defined by weighted Fréchet mean (wFM)
[Fréchet, 1948] is equivariant to the group that naturally
acts on that manifold [Chakraborty et al., 2018b].

• Since wFM is non-linear and acts like a contraction mapping
[Mallat, 2016] analogous to ReLU or sigmoid, non-linear
activation functions such as ReLU may not be needed.

We propose three types of complex-valued layer functions
from the Riemannian geometric point of view:

1) wFM: a new convolution operator on the manifold for
complex-valued data. It is equivariant to complex-valued
scaling. The weights of wFM are to be learned.

2) Tangent ReLU: a new nonlinear activation function that
applies ReLU to the projections in the tangent space of the
complex-valued manifold. We also propose another option
called G-transport, which transports a point on the complex
manifold by an action in the scaling and rotation group.

3) Distance transform: a new fully-connected layer operator
that computes the manifold distance between a feature map
and its wFM. It is invariant to complex-valued scaling. The
weights of wFM are to be learned.

The distance transform layer takes a complex-valued input to
the real-valued domain, where any real-valued convolutional
neural network (CNN) functions such as standard convolutions
and fully connected (FC) layers can be subsequently used.

Fig. 1 shows a sample CNN architecture composed using
our complex-valued layer functions. A complex-valued image

first passes through two wFM complex-valued convolutional
layers, and then undergoes the distance transform. The result-
ing real-valued distances are subsequently fed into a real-
valued CNN classifier with one convolution layer and one
FC layer. Each convolutional layer is illustrated with a single
channel response among a stack of many, with color images
encoding complex-valued responses and grayscale images
encoding real-valued responses.

Our complex-valued CNN has a group invariant property
similar to the standard CNN on real-valued data. Existing
methods extend the real-valued counterpart to the complex
domain based on the form of functions such as convolution
or batch normalization [Bunte et al., 2012, Trabelsi et al.,
2017, Virtue et al., 2017], not on the property of functions
such as equivariance or linearity. Our complex-valued CNN
is composed of layer functions with the desired equivariance
and invariance properties that are essential for a real-valued
CNN classifier in the Euclidean space; it is thus a theoretically
justified analog of the real-valued CNN.

We compare our method with several baselines on two
publicly available complex-valued datasets: MSTAR and Ra-
dioML. Our model consistently outperforms the real-valued
CNN baseline, with fewer than 1% on MSTAR and 3% on
RadioML of the baseline model parameters.

We thus name our approach SurReal (pun intended): a
surprisingly lean complex-valued model that beats the real-
valued CNN model. Our work has three major contributions.

1) We propose novel complex-valued layer functions with
proven equivariance and invariance properties.

2) We extend our model to complex-valued residual CNNs.
3) We validate our method on classification experiments.

Our SurReal CNNs outperform real- and complex-valued
baselines at a fraction of their model sizes.

These results demonstrate significant benefits of proposing
CNN layer functions in terms of desirable intrinsic properties
on the complex plane as opposed to applying the standard
CNN to the 2D Euclidean embedding of complex numbers.

II. RELATED WORKS

Complex numbers are powerful representations and con-
cepts in mathematics, with intimate connections to geometry,
topology, and differentiation [Needham, 1998]. They have a
wide range of applications in physics and engineering.
Complex-valued data representations are widely used as
a modeling choice to encode richer information than real-
valued representations, especially for directional or cyclic
data. [Amin and Murase, 2009] learns a mapping from a
finite range of real values to the unit circle in the complex
plane. [Cadieu and Olshausen, 2012] trains a complex-valued
sparse coding model to capture both edge structure and motion
structure. [Yu, 2009, 2012] combine the confidence and size
of a measurement in a single complex value, and learns a
global embedding from pairwise local measurements. [Maire
et al., 2016] simultaneously encodes both grouping and figure-
ground ordering relationships between neighboring pixels, and
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Fig. 1. Sample architecture of our SurReal model. 1) The input is a complex-valued image; each pixel is color coded with an HSV colormap according
to its complex value, with the color intensity indicating the magnitude, the color hue indicating the phase, and the the full constant saturation. 2) The first
two layers are our proposed complex-valued convolution in terms of weighted Fréchet mean filtering (wFM) on the manifold derived from the polar form of
complex numbers. This convolution outputs complex-valued responses and it is equivariant to complex-valued scaling. Each wFM layer could have multiple
channels, each channel shown here as a complex-valued image. Pixel-wise nonlinear activation functions such as our proposed tReLU and G-transport can be
subsequently applied. 3) The third layer is a distance transformation layer, where the manifold distance between the feature map and its wFM is computed.
This distance is invariant to complex-valued scaling. 4) Once the representation becomes real valued after the distance transformation layer, we could use
any real-valued CNN layer functions for classification. Shown here is the real-valued convolution (CONV) layer followed by the fully connected (FC) layer
towards the final softmax classification. With the built-in invariance to complex-valued scaling, our SurReal model can outperform real-valued baseline models
on complex-valued data with a fraction of the baseline model size.

learns complex-valued pairwise pixel relationships from pixel-
wise figure-ground annotations. [Reichert and Serre, 2013]
uses complex-valued neuronal units to model biologically
plausible deep learning networks. [Bruna and Mallat, 2013,
Bruna et al., 2015] adopt wavelet transforms at earlier layers.
[Arjovsky et al., 2016] adopts unitary weight matrices in
hidden layers for better learning performance.
Traditional complex-valued data analysis utilizes higher-
order statistics such as variance fractal dimension trajectory
[Kinsner and Grieder, 2010] and spectral analysis [Reichert,
1992] to make adequate predictions.
Early neural network approaches have already noted that
complex values have many nice mathematical properties that
real-value data do not have, e.g., the complex identity theorem.
Transformations from the input to the output can be more
effectively learned with complex-valued networks instead of
real-valued networks. Various complex-valued activation func-
tions have been explored, although with little demonstration
of their success in real data settings [Kim and Guest, 1990,
Georgiou and Koutsougeras, 1992, Benvenuto and Piazza,
1992, Nitta, 1997].
Recent neural network approaches continue to build upon
the theoretical advantages of complex-valued data to im-
prove the convergence, stability, and generalization of neural
networks [Nitta, 2002, Hirose and Yoshida, 2012], and to
facilitate the noise-robust memory retrieval mechanisms in
capsule networks [Cheng et al., 2019]. Real-valued layer
functions have also been extended to the complex domain
according to the form of the functions such as convolution,
ReLU, and batch normalization [Bunte et al., 2012, Trabelsi
et al., 2017, Virtue et al., 2017, Virtue, 2018]. Complex-valued
deep learning has also been extended to quaternion neural
networks, as quaternions generalize the concept of complex
values from 2D to 3D [Parcollet et al., 2018].
Recent graph convolution neural networks open up new
computational models in the complex domain [Scarselli et al.,
2008, Bruna et al., 2013]. Since convolution in the spatial
domain is equivalent to multiplication in the spectral domain,
a natural extension of convolution to data defined on an

arbitrary graph is to construct a convolutional filter in terms of
multiplicative weights on the spectrum of the graph Laplacian
[Bruna et al., 2013]. The spectrum of the graph Laplacian is
real-valued if the graph is undirected, and complex-valued if
it is directed [Singh et al., 2016].
Our SurReal complex-valued CNN is unique in utilizing the
geometric property of the complex numbers and approaching
complex-valued learning as a special task of deep learning on
Riemannian manifolds.

Existing methods such as [Maire et al., 2016, Trabelsi et al.,
2017, Amin and Murase, 2009, Virtue et al., 2017] treat a
complex value as a vector in the Euclidean space of R2.
This choice, while straightforward, essentially destroys the
covariant relationship between real and imaginary parts of
a complex number. Naturally complex-valued data such as
SAR, MRI, and RF could be subject to complex-valued scaling
without changing the underlying observation.

To deal specifically with complex numbers, we first separate
and acknowledge the extrinsic scaling effect by asking the
convolution operator to be equivariant to complex-valued
scaling. For a CNN classifier, we design the distance transform
layer to be invariant to complex-valued scaling.

Our SurReal CNN classifier can focus entirely on the
discriminative information between classes, without the need
to build up additional scale invariance by repeatedly training
on data augmented with complex-valued scaling. Our SurReal
model is thus a surprisingly lean complex-valued model that
beats the real-valued CNN model on complex-valued data.
An earlier preliminary version of this work was presented in
[Chakraborty et al., 2019].

III. A SCALING-ROTATION MANIFOLD FOR THE
GEOMETRY OF COMPLEX NUMBERS

A crucial property of complex-valued data is complex-
valued scaling ambiguity: The MRI or SAR images of the
same scene could be related by the multiplication of a single
complex number, depending on how the data is acquired.
Complex-valued scaling can be captured by the scaling action
on the magnitude and the rotation action on the phase.
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Instead of treating the complex plane as the usual 2D
Euclidean space, we identify the non-zero complex plane as
the product manifold of positive magnitudes and planar rota-
tions. We show that scaling and rotation actions preserve the
manifold distance defined on the non-zero complex manifold.
Space of complex numbers. Let R and C denote the field
of real numbers and complex numbers respectively. We have:

z = x+ i y ∈ C, ∀x, y ∈ R. (1)

According to this 2D real-valued representation (x, y) of z,
C is a Riemannian manifold [Boothby, 1986]. The distance
induced by the canonical Riemannian metric is:

d(z1, z2) =
√
(x2 − x1)2 + (y2 − y1)2, (2)

the common Euclidean distance in the 2D complex plane.
Polar form of complex numbers. Any non-zero complex
number can be uniquely represented in the polar form, in terms
of its magnitude and phase.

Definition 1. For ∀z ∈ C and z 6= 0, its polar form is:

z = |z| exp (i]z) (3)

z ∈ C̃ = C \ {0 + i 0} (4)

magnitude: |z| =
√
x2 + y2 (5)

phase: ]z = arctan(y, x) (6)

where exp is the exponential function and arctan is the 2-
argument arc-tangent function that gives the angle in the
complex plane between the positive x axis and the line from
the origin to the point (x, y).

Scaling-Rotation product manifold for C̃. Based on the
polar form, we identify the non-zero complex plane C̃ as the
product space of non-zero scaling and 2D rotations

C̃⇐⇒ R+×SO(2) (7)

where R+ is the manifold of positive reals and SO(2) is the
manifold of planar rotations – a rotation Lie group.

We define a bijective mapping F that can go back and forth
from the complex plane C̃ to the manifold space R+×SO(2):

z = |z| exp (i]z)
F−→←−
F−1

(|z|, R(]z)) (8)

R(]z) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
. (9)

Both spaces are parameterized by magnitude and phase; the
phase is turned into a complex number with exp(·) for C̃ and
into a 2D rotation matrix with R(·) for R+×SO(2).
Manifold distance for C̃. The exponential and logarithmic
maps are respectively exp and log for R+, matrix exponential
expm and matrix logarithm logm for SO(2).

Definition 2. The matrix exponential and logarithm of matrix
X are defined respectively as:

expm(X) =

∞∑
n=0

Xn

n!

X = logm(Y ) if and only if Y = expm(X).

The distance on this product manifold in Eqn. (2) becomes:

d (z1, z2)=

√
log2

|z2|
|z1|

+
∥∥∥logm(R (]z2)R(]z1)−1

)∥∥∥2. (10)

Scaling-rotation is transitive on C̃. The complex plane C̃
as identified with R+×SO(2) is a Riemannian homogeneous
space [Helgason, 1962]. We define transitive actions that move
a point around on the manifold [Dummit and Foote, 2004].

Definition 3. Given a (Riemannian) manifoldM and a group
G with identity element e, we say that G acts on M (from
the left) if there exists a mapping L : G×M→M given by
(g,X) 7→ g.X that satisfies two conditions:

1) Identity: L (e,X) = e.X = X

2) Compatibility: (gh).X = g.(h.X), ∀g, h ∈ G.

An action is called transitive if and only if given X,Y ∈M,
there exists an element g ∈ G, such that Y = g.X .

It is straightforward to verify that scaling and rotation in
R+×SO(2) satisfies the identity and compatibility conditions
on C̃. It is also a transitive group action: For any complex
numbers z1, z2 ∈ C̃, there always exists a relative scaling (of
the magnitude) and rotation (of the phase) that maps z1 to z2.

Proposition 1. The scaling-rotation Lie group R+×SO(2)
transitively acts on C̃ and the action g to take z1 to z2 is:

g =

(
|z2|
|z1|

, R(]z2)R(]z1)
−1
)
∈ R+×SO(2) . (11)

Scaling-rotation is isometric on C̃. We now show that scaling
and rotation actions preserve our manifold distance.

Proposition 2. The scaling and rotation Lie group is isometric
on the complex plane C̃: ∀z1, z2 ∈ C̃, g ∈ R+×SO(2).

d(g.z1, g.z2) = d(z1, z2) (12)

where d is the manifold distance defined in Eqn. (10).

Proof. We use the definition of d and the property that the 2D
rotation group SO(2) is Abelian: ∀A,B ∈ SO(2), AB = BA.
Let g = (r,A) ∈ R+×SO(2). We have:

d(g.z1, g.z2)

=

√
log2

r|z2|
r|z1|

+
∥∥∥logm(AR (]z2) (AR(]z1))

−1
)∥∥∥2

=

√
log2

|z2|
|z1|

+
∥∥∥logm(R (]z2)A (R(]z1)A)

−1
)∥∥∥2

=

√
log2

|z2|
|z1|

+
∥∥∥logm(R (]z2) R(]z1)−1

)∥∥∥2 = d(z1, z2),

completing the proof.

IV. CNN LAYER FUNCTIONS ON COMPLEX MANIFOLD

We propose complex-valued CNN layer functions based on
the scaling-rotation manifold view of complex numbers. Each
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layer function transforms the representation with a certain
property (e.g. equivariance or invariance) on the manifold.

We define first a convolution operator on the manifold
that is equivariant to complex-valued scaling. We then de-
fine nonlinear activation functions and fully-connected layer
functions that are invariant to complex-valued scaling. A CNN
composed with such layer functions would then be intrinsically
invariant to complex-valued scaling.

A. Complex-Valued Convolutional Layer Function

The standard convolution, denoted by ∗ and defined by n
weights {wk} over n neighbouring points {xk}, is simply the
weighted average of real numbers in the Euclidean space:

{wk} ∗ {xk} =
n∑
k=1

wkxk. (13)

We extend this concept to points on a manifold.
Fréchet mean on the manifold. The weighted average of
n points on a Riemannian manifold is called the weighted
Fréchet mean (wFM) [Fréchet, 1948]. We define the complex
convolution, denoted by ∗̃ , as wFM on the scaling-rotation
manifold for complex values (center circles in Fig. 2):

{wk} ∗̃ {zk} = wFM({wk}, {zk}) (14)

wFM({wk}, {zk}) : = arg min
m∈C̃

n∑
k=1

wkd
2(zk,m) (15)

n∑
k=1

wk = 1, wk ≥ 0 (16)

where d is the manifold distance in Eq. (10).
We contrast our complex-valued wFM convolution ∗̃ with

the standard real-valued convolution ∗.
• While the output of ∗̃ is complex-valued, the weights {wk}

are real-valued, just like the weights for ∗.
• While the weights of ∗ can be arbitrary, the weights of ∗̃

are all nonnegative and summed up to 1. This convexity
constraint ensures that the wFM of n points on a manifold
stays on the manifold.

• While the output of ∗ is simply the weighted average, the
output of ∗̃ is the minimizer to a weighted least squares
problem, i.e., the data mean that minimizes the weighted
variance. There is no closed-form solution to wFM; how-
ever, there is a provably convergent n-step iterative solution
[Salehian et al., 2015].

• If d is the manifold distance in Eq. (2) for the Euclidean
space which is also Riemannian, then wFM has exactly
the weighted average as its closed-form solution. That is,
our wFM convolution on the Euclidean manifold is reduced
to the standard convolution, although with the additional
convexity constraint on the weights.

Convolutional wFM layer. As for the standard convolution,
our weights {wk} for wFM are parameters learnable through
stochastic gradient descent (SGD), with the additional convex-
ity constraint on {wk}.
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Fig. 2. Our complex-valued convolution in terms of wFM on the R+×SO(2)
manifold is equivariant to complex-valued scaling. Consider 4 numbers in the
complex plane, marked by 4 colored points on a small magenta trapezoid.
Their equally weighted wFM (marked by the green circle) sits inside the
trapezoid at the geometric mean of their magnitudes and the mean of their
phases. When the 4 complex numbers are multiplied by 1.5 exp

(
i 100π

180

)
, the

points are scaled by 1.5 and rotated by 100◦, moving to the larger trapezoid.
The new wFM is simply the old wFM transported by the same movement.

Each set of weights {wk} defines a single wFM channel in
our convolutional layer, and each layer has multiple channels.
We follow the CNN convolution convention for images, where
the convolutional kernel spans a local spatial neighbourhood
but all the channels. If there are 10 input channels of 50× 50
pixels, to produce 20 output channels with 5×5 spatial kernels,
we need to learn 20 sets of 5× 5× 10 weights.
Equivariance of wFM to R+×SO(2). We have shown that
the scaling-rotation Lie group transitively acts on C̃ and is
isometric (Prop. 2). We use this result to prove that our wFM
is equivariant to complex-valued scaling.

Proposition 3. The complex-valued convolution ∗̃ in Eq. (14)
is equivariant to the action of R+×SO(2): ∀g ∈ R+×SO(2),

{wk} ∗̃ {g.zk} = g. ({wk} ∗̃ {zk}) . (17)

Proof. Let g ∈ R+×SO(2) and o = {wk} ∗̃ {zk}. ∀m ∈ C̃,
n∑
k=1

wkd
2(g.zk, g.o) =

n∑
k=1

wkd
2(zk,o) ≤

n∑
k=1

wkd
2(zk,m)

since g perserves the distance and o is the minimizer over
{zk}. Therefore, g.o is the minimizer over {g.zk}.

Fig. 2 illustrates how wFM is equivariant to rotation and
scaling. For each trapezoid, the center circle marks the wFM
of the four corner points. If the trapezoid is transported using
a particular scaling and rotation action, then the center wFM
is also transported by the same action.

B. Nonlinear Activation Functions

The wFM convolution is a contractive mapping, an effect
of a nonlinear activation function. Nevertheless, for stronger
nonlinearity and acceleration in optimization during learning,
we propose two activation functions from the manifold per-
spective: tangent ReLU and G-transport.
Tangent ReLU (tReLU). The tangent space of a manifold
is a vector space that contains the possible directions for
tangentially passing through a point on the manifold. It could
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Fig. 3. Our tangent ReLU extends ReLU from the real line to the complex
plane C̃, by applying ReLU in the tangent space of R+×SO(2). It rectifies
the magnitude by 1 and phase by 0, creating four corresponding regions before
(left) and after (right) the mapping. Green region: Points retain both their
magnitudes and phases. Cyan region: Points retain their phases with their
magnitudes rectified to 1. Red region: Points retain their magnitudes with
their phases rectified to 0. Brown region: Points are rectified in both the
magnitude and the phase, all to the same point 1 + i · 0.

be regarded as a local Euclidean approximation of the mani-
fold. A pair of logarithmic and exponential maps establish the
correspondence between the manifold and the tangent space.

We extend ReLU to the complex plane C̃ by applying ReLU
in the tangent space of R+×SO(2) manifold. Our tangent
ReLU is composed of three steps.

1) Apply logarithmic maps to go from a point in C̃ to a point
in its tangent space. The mapping is log for r ∈ R+,
and logm for R(θ) ∈ SO(2), which produces a skew
symmetric matrix. We choose the principal log map for
SO(2) in the range of θ ∈ (−π, π]:

logm(R(θ)) = θ ·
[
0 −1
1 0

]
. (18)

2) Apply ReLU in the tangent space of C̃. ReLU is well
defined for a real-valued scalar such as log(r) for R+:

ReLU(x) = max(x, 0), e.g., x = log(r). (19)

We extend ReLU to logm(R(θ)) for SO(2), since it is
just the real-valued θ scaled by a constant matrix:

ReLU(logm(R(θ))) = max(θ, 0) ·
[
0 −1
1 0

]
. (20)

3) Apply exponential maps to come back to C̃ from the
tangent space. We can simplify the 3-step tReLU as:

r
tReLU7→ exp (ReLU(log(r))) = max(r, 1) (21)

R(θ)
tReLU7→ expm (ReLU(logm(R(θ))))=R(max(θ, 0)) (22)

Fig. 3 shows that our manifold perspective of C̃ leads to a non-
trivial extension of ReLU from the real line to the complex
plane, partitioning C̃ into four regions, separated by r = 1
and θ = 0: Those with magnitudes smaller than 1 are rectified
to 1, and those with negative phases are rectified to 0.
G-transport. A nonlinear activation function is a general
mapping that transforms the range of responses. We consider a
general alternative which simply transports all the values in a
feature channel via an action in the group G = R+×SO(2). We
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Fig. 4. Our distance transform is invariant to complex-valued scaling. We
plot Fig. 2 in the tangent space of R+×SO(2), with magnitude on a log
scale for the y-axis and phase for the x-axis. The distance d on the manifold
is directly measured by the Euclidean distance in this space. When the 4
complex numbers are multiplied by 1.5 exp

(
i 100π

180

)
, the points as well as

their wFM are simply translated. The distances between the points and their
wFM thus remain the same. Note: While this direct phase θ representation is
intuitive, our rotation matrixR(θ) can more easily handle phase representation
discontinuity at e.g. ±π, where θ(−π,+π] for a unique determination of θ.

only need to learn one global scaling and rotation per feature
channel, which corresponds to learning one complex-valued
multiplier per channel at a certain depth layer.

C. Fully-Connected Layer Functions

For classification tasks, having equivariance of convolution
and range compression of nonlinear activation functions are
not enough; we need the final representation of a CNN to be
invariant to variations within each class.

In a standard CNN classifier, the entire network is invariant
to the action of the group of translations, achieved by the
fully connected (FC) layer. Likewise, we develop a FC layer
function on C̃ that is invariant to the action of R+×SO(2).

Since the manifold distance d is invariant to actions in G =
R+×SO(2), we propose the distance between each point of a
set and their weighted Fréchet mean, which is equivariant to
G, as a new FC function on C̃.
Distance transform FC Layer. Let the input be s pixels of c
channels each. We perform a global integration over all these
s·c complex values {tk}. Given s·c weights {wk} for these
individual numbers, we first calculate their wFM m and then
compute the distance uk from tk to the mean m:

m = {wk} ∗̃ {tk} (23)
uk = d(tk,m). (24)

The output is real-valued and of the same size as the input.
The weights {wk} are the parameters to be learned and there
could be multiple sets of such weights at this layer.

Proposition 4. The distance to the wFM, defined in Eq. (23)
and Eq. (24), is invariant to the action of G = R+×SO(2).
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Fig. 5. Our complex-valued CNN with residual connections allows manifold
valued representations to be combined across different depths. Top) A sample
CNN with complex-valued convolution (wFM), distance transform (DIST),
real-valued convolution (CNN), and fully connected (FC) layers. Bottom)
To create a residual structure (Res), we add skip connections between two
adjacent convolutional layers. We first spatially align their feature maps via
convolution (wFM for complex-valued and CONV for real-valued) and then
combine them via channel-wise concatenation for complex-valued data and
addition for the real-valued data. The only difference between real-valued
and complex-valued residual blocks is how the feature maps are combined:
Addition is a vector space operator that does not apply to two points on a
non-Euclidean manifold.

Proof. Per Propositions 2 and 3, ∀g ∈ G, we have:

d (g.tk, {wk} ∗̃ {g.tk})
= d (g.tk, g. ({wi}) ∗̃ {tk})) equivariance of wFM
= d (tk, {wk} ∗̃ {tk}) invariance of distance

completing the proof.

Fig. 4 re-plots Fig. 2 in the (log(r), θ) space, which corre-
sponds to the tangent space of R+×SO(2) where the manifold
distance can be directly visualized as the Euclidean distance.
When the four corners of the trapezoid are scaled and rotated,
the trapezoid is simply translated along (log(r), θ) axes. The
distance from points to their wFM remain the same.

Since the output of the distance transform layer is real-
valued, we can subsequently use any existing layer functions
of a real-valued CNN classifier. Fig.1 shows a sample architec-
ture of our complex-valued CNN, where two successive wFM
convolutional layers are followed by a distance transform FC
layer, a standard convolutional layer, and an FC layer for final
softmax classification.

D. Complex-Valued Residual Layer Function

A standard CNN with residual layers such as ResNet [He
et al., 2016] outperforms the one without. Residual layers are
useful for preventing exploding/vanishing gradients in deep
networks, by utilizing skip connections to jump over some
layers. The skip connections between layers add the outputs
from previous layers to the outputs of stacked layers.

While addition is natural for combining layers in the field
of real numbers, it does not make sense in the field of complex
numbers: We can add two vectors in the Euclidean space, but
we cannot add two points on a non-Euclidean manifold.

Here we propose a complex-valued residual layer function
by retaining the skip connection concept without the addition
to combine the outputs from different layers. Let a feature
layer f(s, c) be specified by the number of pixels s and the
number of channels c. Consider two feature layers f1(s1, c1),
f2(s2, c2), s1 < s2, with one layer through skip connections.
In order to combine them, we first use the wFM convolution
to bring the spatial dimension of f2 from s2 to s1 and then
concatenate the two sets of spatially aligned features:

align spatially: f2(s2, c2)
∗̃→ f̄2(s1, c2) (25)

concatenate: [f1(s1, c1) | f̄2(s1, c2)]→ f(s1, c1 + c2) (26)

Once combined, we can treat them as the input and apply any
wFM convolution as desired.

Fig. 5 shows that we can simply replace two complex-valued
convolution layers with such a residual block connecting
and combining their outputs, and build a residual complex-
valued convolution network. The only difference with the real-
valued residual block is that the combination is channel-wise
concatenation for a non-Euclidean manifold instead of addition
for a vector space.

We can optionally further reduce the number of parameters
for convolution using the tensor ring decomposition [Zhao
et al., 2016]. A c-dimensional convolutional filter W of size
n1×· · ·×nc can be decomposed into c smaller rank b tensors,
each of the form Tk with size b×nk× b such that ∀k1, · · · kc,

W(k1, · · · , kc)= trace (T1(:, k1, :)×· · ·×Tc(:, kc, :)) (27)

where × denotes matrix multiplication. Such a tensor factor-
ization needs b2

∑c
k=1 nk parameters for all the tensors {Tk}

instead of
∏c
k=1 nk parameters for the original W . Tensor ring

decomposition can achieve arbitrary approximation precision
(Theorem 2.2 on pp. 2299 in [Oseledets, 2011]).

V. EXPERIMENTS

We compare our SurReal complex-valued classifier against
two baselines. 1) The first baseline is a real-valued CNN classi-
fier such as ResNet50 which ignores the geometry of complex
numbers and treats each complex value as two independent
real numbers. 2) The second baseline is the deep complex net-
works (DCN) which extends real-valued CNN layer functions
to the complex domain by the form of the functions such as
complex-valued convolution, batch-normalization, nonlinear
activation, and weight initialization [Trabelsi et al., 2017].
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TABLE I
SURREAL CNN IN DETAILED LAYER SPECIFICATION

Layer Type Input Shape Kernel Stride Output Shape

wFM CONV [2, 1, 100, 100] 5× 5 2 [2, 20, 48, 48]

G-transport [2, 20, 48, 48] - - [2, 20, 48, 48]

wFM CONV [2, 20, 48, 48] 5× 5 2 [2, 20, 22, 22]

G-transport [2, 20, 22, 22] - - [2, 20, 22, 22]

DIST [2, 20, 22, 22] - - [20, 22, 22]

CONV [20, 22, 22] 5× 5 1 [30, 18, 18]

BN+ReLU [30, 18, 18] - - [30, 18, 18]

MaxPool [30, 18, 18] 2× 2 2 [30, 9, 9]

CONV [30, 18, 18] 5× 5 3 [30, 2, 2]

BN+ReLU [30, 2, 2] - - [30, 2, 2]

CONV [30, 2, 2] 2× 2 1 [30, 1, 1]

BN+ReLU [30, 1, 1] - - [30, 1, 1]

FC [30] - - [50]

FC [50] - - [11]

The network has two layers of complex-valued convolution (wFM) and
nonlinear activation (G-transport), distance transform (DIST), and then a
real-valued CNN classifier composed with standard convolution (CONV),
batch normalization (BN) and ReLU, max pooling (MaxPool), and fully
connected (FC) layers. An input or output shape of 4 dimensions indicates
complex-valued data, with each complex number represented by two values:
magnitude and phase. For example, [2, 1, 100, 100] means a complex-valued
1-channel 100× 100 image. A shape of 3 dimensions indicates real-valued
data. In our network, DIST is the depth layer that turns a complex-valued
representation into a real-valued one; it separates the complex-valued and
real-valued representations in the SurReal CNN.

The specific DCN models used in [Trabelsi et al., 2017] are
very large, on the order of one million parameters. To help
directly compare complex-valued layer functions, we adopt
the same SurReal Residual architecture for the DCN baseline,
but replacing all the convolution layers (complex-valued wFM
and real-valued convolution) and nonlinear activation functions
with DCN’s proposed counterparts.

We experiment on two complex-valued datasets: SAR image
dataset MSTAR [Keydel et al., 1996] and synthetic RF signal
dataset RadioML [O’Shea et al., 2016]. All the models are
trained on a GeForce RTX 2080 GPU for 120 epochs, using
Adam optimizer and cross-entropy loss.

A. MSTAR Classification

MSTAR dataset. There are a total of 15, 716 complex-valued
X-band SAR images, distributed unevenly over 11 classes: The
first 10 classes contain different target vehicles and the last 1
class contains background clutter. See Table III for the total
number of images per class. We take the 100 × 100 center
crop of each image and convert the complex value of each
pixel into the polar form.
Real-valued CNN baseline. ResNet50 [He et al., 2016] is
widely successful on real-valued image classification and it is
also used as a baseline in [Shao et al., 2018].
Two SurReal CNN architectures. Table I lists detailed layer
specification of our basic model. Table II adds residual con-

TABLE II
SURREAL RESIDUAL CNN IN DETAILED LAYER SPECIFICATION

Layer Type Input Shape 1 Input Shape 2 Kernel Stride Output Shape

wFM CONV [2, 1, 100, 100] - 5× 5 2 [2, 20, 48, 48]

G-transport [2, 20, 48, 48] - - - [2, 20, 48, 48]

wFM CONV [2, 20, 48, 48] - 5× 5 2 [2, 20, 22, 22]

wFM Res [2, 20, 48, 48] [2, 20, 22, 22] 5× 5 2 [2, 20, 22, 22]

G-transport [2, 20, 22, 22] - - - [2, 20, 22, 22]

DIST [2, 20, 22, 22] - - - [20, 22, 22]

CONV [20, 22, 22] - 5× 5 1 [30, 18, 18]

BN+ReLU [30, 18, 18] - - - [30, 18, 18]

CONV Stack [30, 18, 18] - 1, 3, 1 1 [30, 18, 18]

CONV Res [30, 18, 18] [30, 18, 18] - - [40, 18, 18]

Maxpool [40, 18, 18] - 2× 2 2 [40, 9, 9]

CONV [40, 18, 18] - 5× 5 3 [50, 2, 2]

BN+ReLU [50, 2, 2] - - - [50, 2, 2]

CONV Stack [50, 2, 2] - 1, 3, 1 1 [50, 2, 2]

CONV Res [50, 2, 2] [50, 2, 2] - - [60, 2, 2]

CONV [60, 2, 2] - 2× 2 1 [70, 1, 1]

BN+ReLU [70, 1, 1] - - - [70, 1, 1]

FC [70] - - - [30]

FC [30] - - - [11]

Our SurReal residual CNN utilizes both complex-valued residual blocks (Fig.
5) as well as real-valued residual blocks. In CONV Stack, we stack three
convolutions with 1× 1, 3× 3, 1× 1 kernels respectively. We zero pad the
inputs on the 3× 3 convolution to preserve the spatial dimensions.

TABLE III
MSTAR DATASET SIZE: NUMBER OF IMAGES PER CLASS

C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1285 429 6694 451 1164 1415 573 572 573 1401 1159

nections. Both models have two complex-valued convolutions
(with nonlinear activation), one distance transform layer, and
two real-valued convolutions (with batch normalization and
ReLU), max pooling, and two fully connected layers. While
we have listed G-transport in the two tables, we have also tried
tReLU as the complex-valued nonlinear activation function;
their difference is insignificant in initial experiments on the
MSTAR dataset, and we focus on G-transport for its simplicity.
Model size comparison. While ResNet50 and DCN have
23 million and 155K parameters respectively, our SurReal
CNN has 67K parameters and SurReal residual CNN has
109K parameters. We can further reduce the parameter count
by implementing convolutions with tensor ring decomposition
[Oseledets, 2011, Zhao et al., 2016]. Fig. 6 plots these model
sizes on a log scale. The saving is substantial: our SurReal
CNN is less than 0.1% of the real-valued baseline and 44%
of the complex-valued baseline.
Task 1: 10-class target recognition. For the 10 target classes,
we split all the data in 5 varying proportions of 1%, 5%,
10%, 20%, 30% for training and the rest for testing. Fig. 7
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Fig. 6. Our SurReal models for MSTAR are much leaner than baselines. Each
model size is plotted as a horizontal bar on a log scale, labeled with the model
name and the number of parameters on the right. ResNet50 is the real-valued
baseline and the largest with 23.5M parameters. DCN is the complex-valued
baseline, with 154K parameters at 0.7% of ResNet50. Our SurReal residual
network has 109K parameters at 0.5% (71)% of ResNet50 (DCN). Our basic
SurReal CNN has 67K parameters at 0.3% (44%) of ResNet50 (DCN). With
the tensor ring implementation for convolutions, our SurReal CNN could be
further reduced to 21K parameters at 0.1% (14%) of ResNet50 (DCN).
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Fig. 7. Our SurReal CNN significantly outperforms real-valued and complex-
valued baselines on MSTAR target recognition, when less data is used for
training. We split the data into training and test sets at varying proportions and
plot the test accuracy. When there is enough training data, e.g., at 30% training
and 70% testing, all three models perform similarly with 98% accuracy. When
there is less training data, e.g., at 5% training and 95% testing, SurReal is
much better with a test accuracy of 90% over DCN’s 60% and ResNet50’s
45%, demonstrating the effectiveness of our complex-valued model.

shows that our SurReal significantly outperforms DCN and
ResNet50, especially when a small percentage of training data
is used. At 5% training and 95% testing, the accuracy is 90%
for SurReal, 60% for DCN, and 45% for ResNet50.
Task 2: 11-class classification. We also include the remaining
clutter class which contains miscellaneous background images.
We create two random subsets, large (L) and small (S), and the
small set of 6, 295 images are contained entirely in the large
set of 12, 610 images. Fig. 8 shows the number of instances
across 11 classes and in training/testing splits.

Table IV shows that all the models perform at a high
accuracy of 99% for the large dataset. The performance drops

Fig. 8. MSTAR large (L) and small (S) subsets have highly imbalanced
classes. C2 is the largest class, C0, C4, C5, C9, C10 come next at about 20%
of the size of C2, and C1, C3, C6, C7, C8 are at about 8% of the size of C2.

TABLE IV
MODEL ACCURACY COMPARISON ON MSTAR-L AND MSTAR-S

Test Accuracy (%) ResNet50 DCN SurReal SurReal-Res

MSTAR-L 99.1 98.9 99.1 99.2

MSTAR-S 97.4 93.3 97.7 98.4

Difference S−L −1.7 −6.6 −1.4 −0.8

Our SurReal CNN and its residual version consistently outperform the
real-valued baseline ResNet50 and complex-valued baseline DCN. SurReal-
Res retains the accuracy the most when the overall data size is reduced,
demonstrating better generalization capability from small data.

as the overall data size is reduced by half in the small dataset,
but the drop is the least at −0.8% for SurReal-Res, followed
by −1.4% for SurReal, −1.7% for ResNet50, and the most
at −6.6% for DCN. Our results against the two baselines
suggest that it is both the residual connections and more
importantly how we handle complex-valued data that delivers
more generalizing performance from smaller training data.

Fig. 10 shows sample channel responses from our SurReal
CNN on MSTAR-S images. With two complex-valued wFM
convolutions, followed by distance transform and real-valued
convolution, the representation for each input SAR image
quickly becomes more distinctive across classes, facilitating
accurate discrimination.

Fig. 9 shows the confusion matrix between classes on
MSTAR-S. In general, the more training instances in the class,
the least confusion with other classes at the test time. However,
despite the significant class imbalance, the performance gap
is small between the minority and majority classes. Residual
connections help clear up more confusion.

B. RadioML Classification

RadioML Dataset. They are synthetically generated radio
signals with modulation operating over both voice and text
data. Noise is added further for channel effects. Each signal
has 128 time samples and is tagged with a signal-to-noise ratio
(SNR), in the range of [−20, 18] with an increment step of
2. There are 11 modulation modes, of which BPSK, QPSK,
8PSK, 16QAM, 64QAM, BFSK, CPFSK, PAM4 are digital
modulations, and WB-FM, AM-SSB, and AM-DSB are analog
modulations. There are 20, 000 instances per modulation. See
sample instances in Fig. 11. The data is split 50/50 between
training and testing.
Real-valued CNN Baseline. We use O’Shea’s model [O’Shea
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Fig. 9. The confusion matrix for our SurReal CNN (left) and SurReal-Res
CNN (right) on MSTAR-S. 1) The dataset is small and highly imbalanced
across classes (Fig. 8 Right). The model achieves better accuracy for classes
with more instances: The accuracy is 100% for C2 and 94% for C1 and C3.
Overall, the accuracy gap is small, considering the size of C1 and C3 is only
8% of the size of C2. 2) The residual connections help further clear up the
confusion between classes. The matrix becomes more strongly diagonal.

et al., 2016] and feed the 1-channel complex-valued RF signal
as a (real,imaginary) two-channel signal.
Model size comparison. We follow the architecture of DCN
and SurReal for images and adapt the spatial dimensions to
fit the 1 × 128 RF signals. Fig. 12 plots these model sizes
on a log scale. Our SurReal CNN is 0.7% of the real-valued
baseline and 58% of the complex-valued baseline.
Accuracy over SNR. Fig. 13 compares the test accuracy at
various SNR levels. Our SurReal underperforms the baselines
at lower SNRs and outperforms the real-valued O’Shea base-
line at higher SNRs. For example at SNR 10, it achieves
76.1%, surpassing O’Shea’s 72.7% with 0.7% of its model
size and on par with DCN’s 76.3% at 58% of its size.

VI. SUMMARY AND CONCLUSIONS

Deep learning is widely adopted in machine learning and
computer vision. Most existing deep learning techniques are
developed for data in a vector space. However, practical
data often have correlations between channels and are better
modeled as points a manifold.

While the Nash embedding theorem [Boothby, 1986] as-
sures us that it is always feasible to embed the data on a
manifold into a higher dimensional vector space, it would also
result in an increase in the model complexity and training time.
Recent geometric deep learning approaches develop tools for
spaces with certain geometry such as graphs and surfaces.

We deal with deep learning on complex-valued data, and
we approach it from a geometric perspective. The common
approach is to represent complex-valued data as two-channel
real-valued data and then all the real-valued deep learning
tools can be used. However, this representation ignores the
underlying geometry that defines the complex-valued data:
Complex-valued data containing the same information could
be subject to arbitrary complex-valued scaling.

We propose to model the space of complex numbers as
a product manifold of non-zero scaling and planar rotations.
Arbitrary complex-valued scaling naturally becomes a group

of transitive actions on this manifold. We can subsequently
define convolution on the manifold that is equivariant to this
action group, and define distance transform that is invariant
to this action group. The manifold perspective also allows us
to define new nonlinear activation functions such as tangent
ReLU and G-transport, as well as residual connections on the
manifold-valued data.

A complex-valued CNN classifier composed of such layer
functions has built-in invariance to complex-valued scaling, so
that the model only needs to focus on the discrimination be-
tween classes. Our experimental results validate our principled
approach, and we dub our model SurReal based on its high
performance achieved at a super-lean model size compared
with real-valued or complex-valued baselines.
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