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VolterraNet: A higher order convolutional
network with group equivariance for

homogeneous manifolds
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Abstract—Convolutional neural networks have been highly successful in image-based learning tasks due to their translation
equivariance property. Recent work has generalized the traditional convolutional layer of a convolutional neural network to non-Euclidean
spaces and shown group equivariance of the generalized convolution operation. In this paper, we present a novel higher order Volterra
convolutional neural network (VolterraNet) for data defined as samples of functions on Riemannian homogeneous spaces. Analagous to
the result for traditional convolutions, we prove that the Volterra functional convolutions are equivariant to the action of the isometry group
admitted by the Riemannian homogeneous spaces, and under some restrictions, any non-linear equivariant function can be expressed as
our homogeneous space Volterra convolution, generalizing the non-linear shift equivariant characterization of Volterra expansions in
Euclidean space. We also prove that second order functional convolution operations can be represented as cascaded convolutions which
leads to an efficient implementation. Beyond this, we also propose a dilated VolterraNet model. These advances lead to large parameter
reductions relative to baseline non-Euclidean CNNs.
To demonstrate the efficacy of the VolterraNet performance, we present several real data experiments involving classification tasks on
spherical-MNIST, atomic energy, Shrec17 data sets, and group testing on diffusion MRI data. Performance comparisons to the
state-of-the-art are also presented.

Index Terms—Homogeneous spaces, Volterra Series, Convolutions, Geometric Deep Learning, Equivariance
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1 INTRODUCTION

CNNs were introduced in the 1990s by Lecun [1] and gained
enormous popularity in the past decade especially after the
demonstration of the significant success on Imagenet data
by Krizhevsky et al. [2]. At the heart of CNNs success is
its ability to learn a rich class of features from data using
a combination of convolutions and nonlinear operations
such as ReLU or softmax functions. The success of CNNs
however is achieved at the expense of a large number of
parameters that need to be learned and a computational
burden in the training time. It is well known now that a
multi-layer perceptron can approximate any function to the
desired level of accuracy with a finite number of neurons in
the hidden layer. It is therefore natural to consider parameter
efficiency as one of the network design goals to strive for in
a deep netowrk. The higher order Volterra series can capture
a richer class of features and hence significantly reduce the
total number of parameters while maintaining comparable or
better classification accuracy relative to the baseline models.

In computer vision and medical imaging, many applica-
tions deal with data domains that are non-Euclidean. For
instance, the n-sphere (n ≥ 2), the manifold of symmetric
positive definite matrices, the Grassmannian, Stiefel man-
ifold, flag manifolds etc. Most of these manifolds belong
to the class of (Riemannian) homogeneous spaces (mani-
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folds). Thus, our goals here are to 1) Introduce a principled
framework for defining CNNs on general homogeneous
Riemannian manifolds. 2) Introduce a novel higher order
convolution layer using Volterra theory [3] on homogeneous
Riemannian manifolds which provides significant parame-
ter-efficiency improvements for non-Euclidean CNNs. 3) Es-
tablish empirical evidence demonstrating the applicability
of our homogeneous Riemannian manifold CNNs and the
performance boost provided by the Volterra convolutions.

Much of the recent work in this problem domain has
focused on generalizing CNNs to homogeneous spaces by
exploiting the weight sharing that the symmetries of the
underlying manifold allow. The 2-sphere is a particularly
important example. In the recent past, CNNs have been
reported in literature [4], [5], [6] which are designed to
handle data that are samples of functions defined on a 2-
sphere and hence are equivariant to 3D rotations which are
members of the SO(3) group. The spherical convolution1

network presented in [5], [7] is named Spherical CNN.
Recently, Kondor et al. in [8] proposed the Clebsch-Gordan
net by replacing the repeated forward and backward Fourier
transform operations used in [5]. They showed that by using
the Clebsch-Gordan transform as the source of nonlinear-
ity, better performance can be achieved by avoiding the
repetitive forward and inverse Fourier transform operations.
In [9], authors present polar transformer networks, which
are equivariant to rotations and scaling transformations.

1. As has been pointed out several times in the literature, the
convolution operation in CNNs is actually a correlation and not a
convolution. Hence, in this paper, we will use the term convolution and
correlation interchangeably but always imply correlation.
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By combining them with the spatial transformer [10], they
achieved the required equivariance to translations as well.
Recently, the equivariance of convolutions to more general
classes of group actions has been reported in literature [11],
and later in [12]. In [7], Esteves et al. used the correlation
defined in [13] to propose an SO(3) equivariant operator and
in turn define a spherical convolution. In this paper, we will
define correlations and the Volterra series on a homogeneous
manifold and show that the equivariance property holds for
both.

Volterra kernels were first proposed in image classifica-
tion literature in [14], [15]. In [15], authors learn the kernels in
a data driven fashion and formulate the learning problem as a
generalized eigenvalue problem. Volterra theory of nonlinear
systems was applied more than two decades ago to a single
hidden layer feed-forward neural network with a linear
output layer and a fully dynamic recurrent network in [16].
Most recent use of Volterra kernels in deep networks was
reported in [17], where, authors presented a single layer of
Volterra kernel based convolutions followed by conventional
CNN layers. They however did not explore equivariance
properties of the network or consider non-Euclidean input
domains.

In this paper, we define a Volterra kernel to replace
traditional convolution kernels. We present a novel gen-
eralization of the convolution group-equivariance property
to higher order convolutions expressed using Volterra theory
of functional convolution on non-Euclidean domains, specif-
ically, the Riemannian homogenous spaces [18] referred to
earlier. Most of these manifolds are commonly encountered
in mathematical formulations of various computer vision
tasks such as action recognition, covariance tracking etc.,
and in medical imaging for example, in diffusion magnetic
resonance imaging (dMRI), elastography etc. By generalizing
traditional CNNs in two possible ways, 1) to cope with
data domains that are non-Euclidean and 2) to higher order
convolutions expressed using Volterra series, we expect to
extend the success of CNNs in yet unexplored ways.

We begin with a significant extension of prior work by
the authors of [19], where the authors defined a correlation
operation for homogeneous manifolds. Specifically, our
extension consists of a proof that not only is the correlation
operation group equivariant, but additionally any linear
group equivariant function can be written as a correlation on
the manifold (Banerjee et al. [19] only showed the first fact).
We present experiments to demonstrate better performance
of the proposed VolterraNet on spherical-MINST and the
Shrec17 data with less number of parameters than previously
shown in literature for the Spherical-CNN and the Clebsch-
Gordan net. We then present a dilated convolution model
based on the VolterraNet and demonstrate its efficacy in
group testing on diffusion magnetic resonance data acquired
from patients with movement disorders. The domain of
this data is another example of a Riemannian homogeneous
space.

In summary, our key contributions in this paper are:
1) A principled method for choice of basis in designing a
deep network architecture on a Riemannian homogeneous
manifoldM. 2) A proof of a generalization of the classical
linear shift invariance (in our terminology, equivariance) char-
acterization theorem for correlation operations on Rieman-

nian homogeneous manifolds. 3) A novel generalization of
convolution operations to higher order Volterra series on non-
Euclidean domains specifically, Riemannian homogeneous
manifolds which are often encountered both in computer
vision and medical imaging applications. 4) A generalization
of the classical non-linear shift invariance (in our terminology,
equivariance) characterization theorem for Volterra convo-
lution operations on Riemannian homogeneous manifolds.
5) Experiments on real data sets that are publicly available
such as the spherical-MNIST, atomic energy and Shrec17. For
these real data, we present comparisons to the state-of-the-
art methods. 6) An extension of the VolterraNet to Dilated
VolterraNet and demonstrate its efficiency via group testing
on diffusion MRI brain scans from controls (normal subjects)
and movement disorder patients. Further, ablation studies
on VolterraNet to demonstrate the usefulness of the higher
order convolution operations.

The rest of the paper is organized as follows: In section
3.3 we define the correlation operation on homogenous
manifolds and prove a generalization of the Euclidean
linear shift invariance (LSI) theorem for this correlation
operation. Then, in section 3.4 we present a framework
for principled choice of basis in representing functions on
a Riemmanian homogeneous manifold. In section 4.1, we
define the Volterra higher-order convolution operation and
prove a generalization of the non-linear shift invariance
theorem for this Volterra operation. Following this, we
present a detailed description of the proposed VolterraNet
architecture in 5 and a description of the proposed dilated
VolterraNet in 6. Finally, section 7 contains the experimental
results and section 8 the conclusions.

2 LIST OF NOTATIONS

We now summarize the list of notations that will be used
throughout this paper.
M Riemannian homogeneous space (manifold)
G a group
SO(n) n-dimensional special orthogonal group

of matrices
I(M) Isometry group admitted byM
L2(M,R) Space of real-valued square integrable

functions onM
L2(G,R) Space of real-valued square integrable

functions on G
ωM Volume form ofM
µG Haar measure of G
g · x/Lg(x) Action of g ∈ G on x ∈M
gh/Lg(h) Action of g ∈ G on h ∈ G
g · f/L∗g−1(f) Action of g ∈ G on f :M→ R

and is given by x 7→ f(g−1 · x)
Sn n-sphere
R+ Space of positive reals
P3 Space of 3× 3 symmetric

positive-definite matrices
GL(n) General linear group of n× n matrices
O(n) Space of n× n orthogonal matrices
R \ {0} Space of reals without the origin
Stab(x) Stabilizer of an element x ∈M
gM Riemannian metric on the manifoldM
logm Matrix log operation
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3 CORRELATION ON RIEMANNIAN HOMOGENEOUS
SPACES

In this section, we define a correlation operation which
generalizes the Euclidean convolution layer to arbitrary
Riemannian homogeneous spaces. Further, we prove a
generalization to Riemannian homogeneous spaces of the
linear shift-invariant system (LSI) characterization of Eu-
clidean convolutions. Similar theorems were first proved
in [11] and later in [12]. This result is not meant to be
novel but to motivate the analogous result for higher order
convolutions on Riemannian homogeneous spaces that we
prove subsequently.

3.1 Background

We will briefly review the differential geometry of Rieman-
nian homogeneous spaces from an informal perspective.
Formal definitions will be deferred to the appendix for
conceptual clarity.

As mentioned earlier, Riemannian homogeneous spaces
are Riemannian manifolds which ‘look’ the same locally at
each point with respect to some symmetry group G, meaning
that the action of G onM is transitive. We will specifically
consider Riemannian manifolds with a transitive action of the
isometry group I(M). For the rest of the paper, we use G =
I(M) unless mentioned otherwise. For example, the 2-sphere
is a homogeneous space with G = SO(3). An important fact
about homogeneous spaces is that they can be identified
as a quotient space. In general, if M is a homogeneous
space with group G acting on it, and Hx is some stabilizer
(see definition in Appendix A) of of a point x ∈ M then
M' G/Hx. Returning to the 2-sphere example, if we take
H to be the stabilizer of the north pole, a subgroup of SO(3)
isomorphic to SO(2), then G/H ' SO(3)/SO(2) ' S2. For
a detailed exposition on these concepts, we refer the reader
to [18].

3.1.1 Assumptions
For the remainder of this paper we assume M to be a
Riemannian homogeneous space admitting a transitive action
of the group G, which we call the symmetries ofM. We also
assume thatG is a locally compact topological group. Further
we assume that any function f :M→ R is square integrable,
i.e.
∫
M |f(x)|2ωM(x) <∞, where ωM is a suitable volume

form onM. As mentioned before, we denote the space of
square integrable functions onM by L2(M,R).

3.2 Euclidean LSI Theorem

We begin this section by recalling the Euclidean Linear Shift
Invariant (LSI) theorem.

Definition 1. Let F : U → V be a bounded linear operator
between spaces U and V consisting of functions Rn → R. For
f ∈ U ∪ V and x ∈ Rn we define τx(f)(z) = f(z − x).
The set {τx}x∈Rn forms a group under composition. We say F
is translation equivariant (i.e. shift invariant in the traditional
literature) if

τx(F (g)) = F (τx(g))

for all g ∈ U , x ∈ Rn.

Theorem 1. Let w : Rn → R be a weight kernel, then the
operator given as Gw : U → V is defined by Gw(f) = f ? w,
where ? is the Euclidean convolution operation which is a bounded,
linear, and translation equivariant operator. Further, if F is any
bounded linear translation equivariant operator, then there exists
w : Rn → R such that F = Gw, i.e. F (f) = f ? w, for all
f ∈ U .

Thus, Euclidean convolutions with a weight kernel have
an interesting and powerful characterization as linear shift
invariant operators. Next we show that the correlation oper-
ation on any Riemannian homogeneous manifolds satisfy a
generalization of the aforementioned LSI theorem.

3.3 Generalizing Convolutions and the LSI Theorem to
Riemannian homogeneous spaces

We begin by defining the correlation operation for arbitrary
homogeneous Riemannian manifolds. Some equivalent defi-
nitions have been made several times in the literature, first
for specific manifolds as in [5], [7], then in more generality
such as in [11] and later in [12]. We then state a generalization
of the LSI theorem for this correlation operation, which we
call the Linear Group Equivariant (LGE) theorem. Note that
similar theorems were first proved in [11] and later in [12]. We
present this theorem not as a novel result, but as motivation
for a non-linear version of the theorem which we will prove
in section 4. Regardless, we present a much simpler proof
(compared to [11], [12]) of the result in the appendix.

Definition 2 (Correlation). The correlation between f :M→
R and w : M → R is given by, (f ? w) : G → R defined as
follows:

(f ? w) (g) :=

∫
M
f(x) (g · w) (x)ωM(x) (1)

The correlation between f : G→ R and w : G→ R is given
by, (f ? w) : G→ R defined as follows:

(f ? w) (g) :=

∫
G
f(h) (g · w) (h)µG(h) (2)

where µG is the Haar measure on G (which is guaranteed to exist
based on our assumption that G is a locally compact topological
group). Please see the discussion at the end of this subsection for
details.

Equation 1 is described in words as follows: the weight
kernel w is “shifted” using the action of the symmetry group,
and the point-wise product of the shifted weight kernel and
the function f is integrated over the manifold. A similar
interpretation can be given to the correlation on groups in
Eq. 2. This generalizes the work on the 2-sphere presented in
[5], [7] for an arbitrary Riemannian homogeneous spaceM.

We show that this correlation operation is equivariant to
the isometry group G of the underlying homogeneous space
M. In order to state this theorem, we first formally define
equivariance.

Definition 3 (Equivariance). Let X and Y be sets and G be a
group acting on X and Y (in literature these sets are termed as
G sets [20]). Then, F : X → Y is said to be equivariant to the
action of G if

F (g · x) = g · F (x) (3)
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for all g ∈ G and all x ∈ X .

We are now ready to state the following theorems:

Theorem 2. Let S and U be L2(M,R) or L2(G,R) and
F : S → U be a function given by f 7→ (f ? w). Then F is
equivariant with respect to the pullback action of G, i.e.

(φ · f) ? w = φ · (f ? w)

for φ ∈ G a symmetry ofM where

φ · h := h ◦ φ−1

for any h :M→ R square-integrable.

Proof. See appendix B. �

This constitutes the forward direction of the LGE theorem.
Now we show the converse statement, namely, every linear
group equivariant function is a correlation.

Theorem 3. Let S and U be L2(M,R) or L2(G,R) and F :
S → U be a linear equivariant function with respect to the
pullback action of I(M). Then, ∃w ∈ S such that, (F (f)) (g) =
(f ? w) (g), for all f ∈ S and g ∈ G.

Proof. See appendix B. �

Together with these two theorems, we can generalize the
LSI theorem to homogeneous spaces using the correlation
defined in Def. 2 .

A NOTE ON VOLUME FORMS / MEASURES

In Def. 2, we specify the Haar measure for integration of
a function on G. If f and w are functions on G, then the
Haar measure µG has several desirable properties. For
example, the Haar measure is invariant to “translations”,
i.e. if S ⊂ G is measurable then µG(S) = µG(gS) for
any g ∈ G. Further, using the Haar measure provides a
convolution theorem which makes correlation a simple
multiplication under the generalized Fourier transform
for groups. This particular property is vital for efficient
implementations.
Note that on the other hand, we do not specify a specific
volume form ωM for integration of function on M in
definition 2. In many cases, the Haar measure on G will
induce a G-invariant volume form on M ' G/H , but
stating the exact conditions for this to be possible requires
some work. Instead, we define the correlation using an
arbitrary volume form. In the next section we will give a
construction which induces such a G-invariant volume
form onM.

3.4 Basis functions for L2-functions on homogeneous
spaces

Our goal in this section is to induce a natural basis on
L2 (M,R) from the canonical basis on L2 (G,R) where
G is the group acting on the homogeneous manifold M.
The basis on G consists of matrix elements of irreducible
unitary representations, which provides a Fourier transform
on G (for more details reader is referred to [21]). We show
that this construction matches the commonly used basis for
specific manifolds, e.g. the spherical harmonics and Wigner-
D functions in [5]. This construction can be used to induce
basis on arbitrary Riemannian homogeneous spaces.

3.4.1 Basis on L2 (M,R) induced from L2 (G,R)

To induce a basis on L2 (M,R), we use the principal fiber
bundle structure of the homogeneous manifoldM. A fiber
bundle is a space that locally looks like a product space. It
is expressed as a base space B with the fibers making up a
fiber space F , and their union being the total space denoted
by E. There is a projection map π : E → B mapping fibers
to their "base point" on B. A principal fiber G-bundle is a
fiber bundle with a continuous (right) action of a group G,
such that the action of G is free, transitive and preserves the
fibers. For more details on fiber bundle theory see [22].

As mentioned in 3.1,M can be identified with G/H for
G the group action on M and H the stabilizer of a point
x ∈M, usually called the "origin". It is well known that this
identification induces a principal fiber G-bundle structure
onM via the projection map.

Proposition 1. [18] The homogeneous space, M identified as
G/H together with the projection map π : G → G/H is a
principal bundle with H as the fiber. Furthermore there exists a
diffeomorphism ψ : G/H →M given by gH 7→ g · o, where o is
the “origin” ofM.

π

B = M

E = G

≃
H

fibers

S0

σ0

z
e
r
o
s
e
c
t
io
n

Fig. 1. Fiber bundle (B,E, π).

Moreover, a section is
a continuous right inverse
of π, which is denoted by
σ : B → E. In literature
[18], a zero section (denoted
by S ⊂ G) is the section
containing the identity ele-
ment ofH . Let σ0 : S →M
be a diffeomorphism. Given
{vα : G→ R} be the set of
basis of L2 (G,R). Then, we can get the induced basis on
L2 (M,R) as

{
ṽα = vα ◦ σ−10

}
. A schematic of an example

fiber bundle is shown in Fig. 1.
Example: Consider the example of M = S2,

where G = SO(3), H = SO(2). A choice of ba-
sis on L2 (G,R) is Wigner D-functions denoted by{
Dj
l,m|j ∈ {0, 1, · · · ,∞},−j ≤ l,m ≤ j

}
. Let (α, β, γ) be

the parametrization of SO(3) and the zero section (S)
be denoted by {α, β, 0}. Then,

{
Dj
l,0

}
are the choice of

basis on S ⊂ G, which gives the induced basis on S2 as

D̃j
l (θ, φ) =

√
2l+1
4π Dj

l,0(φ, θ, 0). Further, observe that
{
D̃j
l

}
are the spherical harmonics basis.

4 HIGHER ORDER CORRELATION ON RIEMANNIAN
HOMOGENEOUS SPACES

In this section, we define a higher order correlation operator
on Riemannian homogeneous spaces using the Volterra
series, state a theorem demonstrating it’s symmetry equiv-
ariance and show how to compute it efficiently using first
order correlation operations. Further, we prove that the set
of functions which can be written as sums of products of
linear operators and are G-equivariant can be expressed as
a Volterra series. This partially generalizes the non-linear
shift equivariance characterization of Volterra expansions in
Euclidean space.
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4.1 Volterra Series on Homogenous Spaces

We now generalize the Volterra Series to Riemannian homo-
geneous spaces.

Definition 4 (Volterra series expansion). We define the Volterra
expansion of a function f :M→ R or f : G→ R by F (f) =∑∞
n=1 (f ?n wn). If f :M→ R and wn : (M)

⊕n → R then
(f ?n wn) : G→ R is defined as,

(f ?n wn) (g) :=

∫
M
· · ·
∫
M
f(x1) · · · f(xn) (g · wn)

(x1, · · · , xn)ωM(x1) · · ·ωM(xn)

If instead f : G → R and wn : (G)
⊕n → R then (f ?n wn) :

G→ R is defined as,

(f ?n wn) (g) :=

∫
G
· · ·
∫
G
f(h1) · · · f(hn) (g · wn)

(h1, · · · , hn)µG(h1) · · ·µG(hn)

where µG is the Haar measure on G (which again, is guaranteed
to exist based on our assumption that G is a locally compact
topological group).

One can easily see that, Definition 2 is a special case
of definition 4 when n = 1. When n > 1, we will call it
the nth order Volterra expansion. Higher order terms of the
Volterra expansion express polynomial relationships between
function values. An illustration of the second order Volterra
kernel is provided in Figure 2. As we can see, the second
order Volterra kernel has a regular correlation weight kernel
at each location on the manifoldM. The results of applying
these weight kernels get multiplied together to get the output
of f ?2w2. A biological motivation is provided in [17] for the
(Euclidean) Volterra series. Now, we prove that F as defined
in Definition 4 is equivariant to the symmetry group actions
admitted by a homogeneous space.

Theorem 4. Let S and U be L2(M,R) or L2(G,R) and F :
S → U be a function given by f 7→

∑∞
n=1 (f ?n wn). Then, F

is equivariant.

Proof. Observe that the sum of equivariant operators is
equivariant. Hence, we only need to check that f ?n wn
is equivariant for all n. Let g, h ∈ G, let n ∈ N. Then,

(g.f ?n wn) (h) =
(
L∗g−1f ?n wn

)
(h)

=

∫
M
· · ·
∫
M
L∗g−1f(x1) · · ·L∗g−1f(xn)

(L∗h−1wn) (x1, · · · , xn)ωM(x1) · · ·ωM(xn)

=

∫
M
· · ·
∫
M
f(y1) · · · f(yn)wn

(
(h−1g) · y1

, · · · , (h−1g) · yn
)
ωM(g · y1) · · ·ωM(g · yn)

=

∫
M
· · ·
∫
M
f(y1) · · · f(yn)wn

(
(h−1g) · y1

, · · · , (h−1g) · yn
)
ωM(y1) · · ·ωM(yn)

= (f ?n wn) (g−1h)

= L∗g−1 (f ?n wn) (h)

= (g · (f ?n wn)) (h)

Here, (L∗gf)(h) = f(g−1h) (see appendix for details), since,
g, h ∈ G and n are arbitrary F is equivariant. �

(0, 0) (0, 1) (0, 2)

(1, 0) (1, 1) (1, 2)

(2, 0) (2, 1) (2, 2)

θ

φ
0 0.2 0.4 0.6 0.8 1

Fig. 2. Visualization (in the spirit of [17]) of second-order term w2 :
M2 → R of a Volterra kernel (here on a 2-manifold parametrized by
(θ, φ)). The coordinates above each grid represent the first entry w2(x, ·),
and within each grid the gray-scale value represents the weight of the
associated kernel w2(x,y).

In the other direction, we also show that for the afore-
mentioned set of functions, every G-equivariant function can
be written as a Volterra series.

Theorem 5. Let S and U be L2(M,R) or L2(G,R) and F :
S → U be a non-linear G-equivariant function which can be
written as F =

∑
i∈I Fi, where each Fi is a product of two linear

functions, i.e., Fi = Fi,1Fi,2. Then, ∃ {wi}i∈I ⊂ S such that,
(F (f)) (g) =

∑
i∈I (f ?2 wi) (g), for all f ∈ S and g ∈ G.

Proof. It suffices to show that for each term Fi = Fi,1Fi,2
(for Fi,k a linear G-equivariant function) there exists wi such
that Fi = f ?2 wi. If wi(x, y) = wi,1(x)wi,2(y) (i.e. wi is
separable), then f ?2 wi = (f ? wi,1)(f ? wi,2). But by the
previous theorem, there exists wi,k such that Fi,k = f ? wi,k,
completing the proof. �

These results partially generalize the well know non-
linear shift equivariance characterization of Volterra expan-
sions in Euclidean space and justifies the use of the Volterra
series as a higher-order generalization of the correlation
operation Definition 2.

4.2 Efficient Computation of the Second-Order Volterra
Kernel

The Volterra series presented in the previous definition is
significantly more expressive than the correlation operation
defined in Definition 2 since it captures higher order rela-
tionships between inputs, but it requires the computation of
iterated integrals and does not have an efficient GPU imple-
mentation. Note that for separable second order kernel w2,
(f ?2 w2) (g) can be factored as ((f ? w̃2) (g)) ((f ? w̄2) (g)).
Thus, we can compute the second order Volterra series
with separable kernel as a product of traditional correlation
operations. In general, we can use a convex combination of
first order and second order terms of the Volterra series to
define second order Volterra network.

A schematic diagram for the second order Volterra
correlation operator is shown in Fig. 3. This representation
of a second order kernel using product of two separable
kernels is analogous to tensor product approximation of a
function and can be shown to achieve approximation error
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f
w1

w̄2

w̃2
f ⋆2 w2

f ⋆ w1

w
×
f
⋆
w

1
+
(1

−
w
)
×
f
⋆
2
w

2

w

Fig. 3. Second order Volterra correlation operator with first order kernel
w1 and separable second order kernel w2.

of an arbitrary precision [23]. The separability assumption on
the kernels leads to efficient computation which is especially
valuable in the network setting where these operations are
performed numerous times.

5 ARCHITECTURE

We now present the basic modules for implementing our
correlation and higher-order Volterra operations as layers in
a deep network.

5.1 Correlation on homogeneous spaces
Using definition 2 we can define:

Correlation on M - CorrM(f, w): Let f ∈ L2 (M,R)
be the input function and w ∈ L2 (M,R) be the mask.
Then, using definition 2, CorrM(f, w) is defined as (f ? w) :
G→ R. We have shown in Theorem 2, that CorrM(f, w) is
equivariant to the action of G. Hence, we can use CorrG layer
as the next layer.

Correlation on G - CorrG(f, w): Let f̃ ∈ L2 (G,R) be
the input function and w ∈ L2 (G,R) be the mask. Then
analogous to CorrM, we can define CorrG(f, w) as

(
f̃ ? w

)
:

G→ R using definition 2. We have used Theorem 2 to show
that CorrG(f, w) is equivariant to the action of G. Since this
is an operation equivariant to G, we can cascade CorrG.

5.2 Volterra on homogeneous spaces
We can see that because the basic architecture of second order
Volterra series consists of the following modules:

Second order Volterra on M - CorrM2 (f, w1, w2): Let
f ∈ L2 (M,R) be the input function and w1 :M→ R and
w2 : (M)

⊕2 → R be the kernels. Then, CorrM2 (f, w1, w2) :=∑2
j=1 (f ?j wj) : G→ R. We have shown in Theorem 4, that

CorrM2 (f, w1, w2) is equivariant to the action of G. Hence,
we can use CorrG2 (f, w1, w2) layer as the next layer.

Second order Volterra on G - CorrG2 (f, w1, w2): Let
f ∈ L2 (G,R) be the input function and w1 : G → R and
w2 : (G)

⊕2 → R be the kernels. Then, CorrG2 (f, w1, w2) :=∑2
j=1 (f ?j wj) : G → R. We have used Theorem 4 to

show that CorrG2 (f, w1, w2) is equivariant to the action of
G. Since this is an operation equivariant to G, we can cascade
CorrG2 (f, w1, w2).

5.3 Other Layers
Activation function: Since the outputs of all the above
layers are functions from G to R, we will use the standard
activation operation on R.

Invariant last layer: As both layers, CorrM2 and CorrG2
are equivariant to the action of G, so are the cascaded layers.

Since, if the input signal is transformed by a group element
g ∈ G, so is the output of CorrM2 as this layer is equivariant.
Thus the output of CorrM2 is transformed by the same group
element g. Hence, the input of CorrG2 is transformed by g
and due to the equivariance so is the output of CorrG2 . This
justifies that the cascaded layers are equivariant to the action
of G. Hence, after the cascaded correlation layers, the output
f̃ ∈ L2 (G,R) lies on a G set. Similar to the Euclidean CNN,
we want the last layer to be G invariant. Hence, we will
integrate f̃ on the domain G and return a scalar. Note that
in the experiment, we learn multiple channels analogous to
the Euclidean CNN, where in each channel, we learn a G
equivariant f̃ ∈ L2 (G,R). Thus, after the integration, we
have c scalars, where c is the number of channels, which
will be input to the softmax fully connected layer similar
to the Euclidean CNN. We abbreviate this last layer as iL
(invariant layer).

A schematic diagram of our proposed VolterraNet is
shown in Fig. 4.
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Fig. 4. Schematic diagram of a second order Volterranet

6 DILATED VOLTERRANET

In this section, we propose a dilated VolterraNet framework
which is suitable for sequential data. Sequential data here
refers to a sequence of data points (signal measurements
at voxels) along the neuronal fiber tracts that are extracted
from diffusion MRI data sets. Neuronal fiber tracts in certain
regions of the brain are disrupted by movement disorders
such as Parkinsons disease. The sensory motor area tract
(pathway) in the brain is one such neuronal pathway where
the disease caused changes are expected to be observed. By
treating this pathway as a sequence of points where diffusion
sensitized MR signal is acquired, we propose to apply the
dilated VolterraNet (described below) to analyze this data.

It is known that the sequential data should involve
recurrent structure [24], but as pointed out in [25], convo-
lutional architectures often outperform recurrent models
in sequential data analysis. Furthermore, recurrent models
are computationally more expensive than the convolutional
models. But, note that in order to mimic the infinite memory
capabilities of a recurrent model, one needs to increase the
receptive field by using the dilated convolutions. We will
first recap the definition of Euclidean dilated convolution
[25] and then describe the proposed dilated VolterraNet.

6.1 Euclidean Dilated Convolution:
Given a one-dimensional input sequence x : N → Rn

and a kernel w : {0, · · · , k − 1} → R, the dilated con-
volution function (x ?d w) : N → Rn is defined as,
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(x ?d w) (s) =
∑k−1
i=0 w(i)x(s − d × i), where N is the set

of natural numbers and k and d are the kernel size and the
dilation factor respectively. Note that with d = 1, we get the
normal convolution operator. In a dilated CNN, the receptive
field size will depend on the depth of the network as well as
on the choice of k and d.

6.2 Dilated VolterraNet
Now we present a dilated VolterraNet model by combining
the VolterraNet with the dilated CNN model. Given a one-
dimensional input sequence {fi :M→ R}, we will first
apply CorrM2 and cascaded CorrG2 layers to each point in the
sequence independently. The output of a CorrG2 layer is a
function G → R. Let the output of the last CorrG2 layer be
{gi : G→ R}. Then, we discretize the group G, to represent
each gi by a vector xi (as shown in Fig. 5). The steps of
discretization, i.e., length of xi, are chosen via grid search in
the experimental section. This is analogous to the standard
practice in literature [5], [7]. Polar coordinates on G are used
to discretize G and then we use the dilated CNN by treating
each sample as a vector. This essentially amounts to choosing
a uniform grid in the parameter space using Rodrigues
vectors [26], although more sophisticated techniques can
be employed in this context [27]. Now, we input {gi} to the
Euclidean dilated CNN (since the components of gi are real)
to construct a dilated VolterraNet framework. In Fig. 5, we
present a schematic of dilated VolterraNet with input {fi}
followed by CorrM2 →ReLU→ CorrG2 → ReLU→ CorrG2 .

A self explanatory schematic diagram of the dilated
VolterraNet architecture is shown in Fig. 5.
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Fig. 5. Schematic diagram of dilated VolterraNet

7 EXPERIMENTS

In this section, we present experiments on spherical MNIST,
atomic energy and Shrec17 data sets respectively. We present
comparisons of performance of our VolterraNet to Spherical
CNN by Cohen et al. [5] and Clebsch-Gordan net by Kondor
et al. [8]. Further, we also present a separate comparison
with the spherical CNN presented most recently in [7] on the
shrec17 data set. The separate comparison was necessary
due to the fact that the loss function used in [7] was
distinct from the one used in [5], [8]. Finally, we extend
the VolterraNet to a dilated version, a higher order analogue
of the dilated CNN and use it to demonstrate its efficacy
in group testing on diffusion MRI (dMRI) data acquired
from movement disorder patients. The data in this example
reside in a product space, S2 ×R+, which is a Riemannian
homogeneous space distinct from S2. This experiment serves

as an example demonstrating the ability of VolterraNet to
cope with manifolds other than the sphere.

Choice of basis: In our experiments, we have three
examples of manifolds, S2, S2 × R+ and P3. For SO(3),
we use the Weigner basis and for S2 ' SO(3)/SO(2), we
use the induced basis, i.e., the Spherical Harmonics basis. For
S2 ×R+, we use the product basis of each of the spaces, i.e.,
Spherical Harmonics for S2 and the canonical basis for R+.
Since P3 can be written as GL(3)/O(3) , we use the induced
basis on P3 which are induced from the canonical basis on
GL(3).

In all the experiments we compare the VolterraNet archi-
tecture to the state of the art models, and additionally com-
pare it to an architecture which we call Homogeneous CNN
(HCNN) which replaces the Volterra non-linear convolution-
s/correlations with the correlation operations from definition
2. We have released an implementation of the VolterraNet
architecture with the Spherical MNIST experiment which can
be found at, https://github.com/cvgmi/volterra-net.

7.1 Synthetic Data Experiment: Classification of data on
P3

In this section, we first describe the process of synthesizing
functions f : P3 → [0, 1]. In this experiment, we generated
data samples drawn from distinct Gaussian distributions
defined on P3 [28]. Let X be a P3 valued random variable
that follows N (M,σ), then, the p.d.f. of X is given by [28]:

fX (X;M,σ) =
1

C(σ)
exp

(
−d

2(M,X)

2σ2

)
, (4)

where, d(., .) is the affine invariant geodesic distance on P3

as given by d(M,X) =

√
trace

(
(logm (M−1X))

2
)

.

We first chose two sufficiently spaced apart location
parameters M1 and M2 and then for the ith class we generate
Gaussian distributions with location parameters that are
perturbations of Mi and with variance 1. This gives us two
clusters in the space of Gaussian densities on P3, which we
will classify using HCNN and VolterraNet. In this case, the
HCNN network architecture is given by: CorrP3 → ReLU→
CorrGL(3) → ReLU → CorrGL(3) → ReLU → iL → FC. and
for VolterraNet the correlation operations are replaced with
the corresponding Volterra convolutions.

Model mean acc. std. acc.
VolterraNet 91.50 0.08

HCNN 86.50 0.02

TABLE 1
Comparative mean and stdev. on the synthetic data

The data consists of 500 samples from each class, where
each sample is drawn from a Gaussian distribution on P3.
The classification accuracies in a ten-fold partition of the data
are shown in Table 1. In most deep learning applications,
one is used to seeing a high classification accuracy, but we
believe that this can be achieved here as well by increasing
the number of layers and possibly overfitting the data. The
purpose of this synthetic experiment was not to seek an
“optimal” classification accuracy but to provide a flexible
framework which if “optimally” tuned can yield a good
testing accuracy for data whose domain is a non-compact
Riemannian homogeneous space.

https://github.com/cvgmi/volterra-net
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7.2 Spherical MNIST Data Experiment

The spherical MNIST data are generated using the scheme
described in [5]. There are two instances of this data, one in
which we project MNIST digits on the northern hemisphere
(denoted by ‘NR’) and the other where we apply random
rotation afterwards (denoted by ‘R’). The spherical signal is
discretized using a bandwidth of 60.

We selected the same baseline model as was chosen in [5],
which is a Euclidean CNN with 5 × 5 filters and 32, 64, 10
channels with a stride of 3 in each layer. This CNN is trained
by mapping the digits from the northern hemisphere onto
the plane. The Spherical CNN model [5] we used has the
following architecture (as was reported in [5]), CorrS

2

→
ReLU → CorrSO(3) → ReLU → FC with bandwidths 20,
12 and the number of channels 20, 40 respectively. We used
the same architecture for Clebsch-Gordan net as was reported
in [8].

For our method, we used a second order Volterra network
with the following architecture: CorrS

2

2 → ReLU → iL
→ FC with bandwidth 30, 20 respectively and number of
features 25, 10 respectively. We chose a batchsize of 32 and
learning rate of 5× 10−3 with ADAM optimization [29].

We performed three sets of experiments: non rotated
training and test sets (denoted by ‘NR/NR’), non rotated
training and randomly rotated test sets (denoted by ‘NR/R’)
and randomly rotated both training and test sets (denoted
by ‘R/R’). The comparative results in terms of classification
accuracy are shown in Table 2.

Method NR/NR NR/R R/R # params.
Baseline CNN 97.67 22.18 12.00 68000
Spherical CNN [5] 95.59 94.62 93.40 58550
Clebsch-Gordan net [8] 96.00 95.86 95.80 342086
VolterraNet 96.72 96.10 96.71 46010

TABLE 2
Comparison of classification accuracy on Spherical MNIST data

We can see that the VolterraNet performed better than
all the three competing networks for both the ‘R/R’ and
’NR/R’ cases. Note that in terms of number of parameters,
VolterraNet used 46010, while Spherical CNN used 58550
and Clebsch-Gordan net used 342086. The baseline CNN
used 68000 parameters. Thus in comparison, we have approx-
imately an 86% reduction in parameters over the Clebsch-
Gordan net with almost equal or better classification accuracy.
In comparison to the Spherical CNN, we have approximately
a 21% reduction in the parameters over the Spherical
CNN while achieving significantly better performance. This
clearly depicts the usefulness of our proposed VolterraNet
in comparison to existing networks used in processing this
type of data in a non-Euclidean domain.

7.3 3D Shape Recognition Experiment

We now report results for shape classification using the
Shrec17 dataset [30] which consists of 51300 3D mod-
els spread over 55 classes. This dataset is divided into
a 70/10/20 split for train/validation/test. Following the
method in [5], we perturbed the dataset using random
rotations. We processed the dataset as in [5]. Basically, we
represented each 3D model by a spherical signal using a ray
casting scheme. For each point on the sphere, a ray towards

the origin is sent which collects the ray length, cosine and
sine of the surface angle. Additionally, the convex hull of the
3D shape gives 3 more channels, which results in 6 input
channels. The spherical signal is discretized using Discoll-
Healy grid [13] grid with a bandwidth of 128.

The Spherical CNN model [5] we used has the following
architecture (as was reported in [5]): CorrS

2

→ BN →
ReLU → CorrSO(3) → BN → ReLU → CorrSO(3) → BN
→ ReLU → FC with bandwidths 32, 22 and 7 and the
number of channels 50, 70 and 350 respectively. We used the
same architecture for Clebsch-Gordan net as was reported in
[8].

In our method, we used a second order Volterra network
with the following architecture: CorrS

2

→ BN → ReLU →
CorrSO(3)

2 → BN → ReLU → iL → FC with bandwidths
10, 8, 8 respectively and number of features 60, 80, 100
respectively. We chose a batch size of 100 and a learning
rate of 5 × 10−3 with ADAM optimization [29]. Table 3
summarizes comparison of VolterraNet with other existing
deep network architectures that reported results on this data
in literature. From this table, it is evident that VolterraNet
almost always yields classification accuracy results within
the top three methods, while having the best parameter
efficiency.

Comparison with Esteves et al. [7]: We also compared
our VolterraNet with recent work of Esteves et al. [7] using
an extra in-batch triplet loss [34] (as used in Esteves et al. [7]).
We show the comparison results in Table 3 (last two rows),
which clearly shows that, (a) The VolterraNet outperforms
the network in [7] (which is the state-of-the-art algorithm in
terms of parameter efficiency). (b) The triplet loss boosts the
performance of VolterraNet relative to the baseline loss of
cross entropy.

7.4 Regression Experiment: Prediction of Atomic En-
ergy

Here, we report the application of our VolterraNet to the
QM7 dataset [35], [36], where the goal is to regress over
atomization energies of molecules given atomic positions
(pi) and charges (zi). Each molecule consists of at most
23 atoms and the molecules are of 5 types (C, N, O, S, H).
We use the Coulomb Matrix (CM) representation proposed
by [36], which is rotation and translation invariant but not
permutation invariant. We used a similar experimental setup
to that described in [5] for this regression problem. We define
a sphere Si around pi for each ith atom. We define the
potential functions

Uz(x) =
∑

i6=j,zj=z

ztiz

‖x− pi‖
, (5)

for every z and for every x on the sphere Si. This yields
a spherical signal consisting of 5 features which were dis-
cretized using the Discoll-Healy grid [13] with a bandwidth
of 20. For the VolterraNet, we used one S2 and SO(3) second
order Volterra block with bandwidths 12, 8, 8, 4 and number
of features 8, 10, 20, 50 respectively.

We compute the loss and report it in Table 4. We can see
that VolterraNet performs better than the competing methods.
For Spherical CNN [5] and Clebsch-Gordan net [8], we used
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Method P@N R@N F1@N mAP NDCG # params.
Tasuma_ReVGG [31] 0.70 0.76 0.72 0.69 0.78 3M
Furuya_DLAN [32] 0.81 0.68 0.71 0.65 0.75 8.4M
SHREC16-bai_GIFT [33] 0.68 0.66 0.66 0.60 0.73 36M
Deng_CM-VGG5-6DB 0.41 0.70 0.47 0.52 0.62 -
Spherical CNN [5] 0.70 0.71 0.69 0.67 0.76 1.4Mil
Clebsch-Gordan net [8] 0.70 0.72 0.70 0.68 0.76 -
Ours (VolterraNet) 0.71 (2nd) 0.70 (3rd) 0.70 (3rd) 0.67 (3rd) 0.75 (4th) 396297

[7] (w triplet loss) 0.72 0.74 0.69 - - 0.5M
Ours (w triplet loss) 0.73 0.74 0.70 0.68 0.76 396297

TABLE 3
Comparison results in terms of classification accuracy on the shrec17 data

Method MSE
MLP/ Random CM [37] 5.96
LGIKA (RF) [38] 10.82
RBF Kernels/ Random CM [37] 11.42
RBF Kernels/ Sorted CM [37] 12. 59
MLP/ Sorted CM [37] 16.06
Spherical CNN [5] 8.47
Clebsch-Gordan net [8] 7.97
Ours (VolterraNet) 5.92 (1st)

TABLE 4
Comparison results on atomic energy prediction

similar architectures as described in the respective papers.
Spherical CNN [5] and Clebsch-Gordan net [8] use 1.4M
and 1.1M parameters respectively, while the VolterraNet
used 128460, nearly an order of magnitude reduction of
parameters, while achieving the best classification accuracy.
This illustrates the parameter efficiency gains that we get
from using a higher order correlation, a richer feature, in the
VolterraNet.

7.5 Network architecture for dMRI data Using Dilated
VolterraNet

Diffusion MRI (dMRI) is an imaging modality that non-
invasively measures the diffusion of water molecules in
tissue samples being imaged. It serves as an interesting
example of our framework since dMRI data can naturally
be described by functions on a Riemannian homogeneous
space. In this section we describe the dMRI data and its
processing using the framework presented in this paper,
which will help the reader understand the results of the
following subsections.

In each voxel of a dMRI data set, the signal magnitude is
represented by a real number along each gradient magnetic
field over a hemi-sphere of directions in 3D. Hence, in each
voxel, we have a function f : S2 ×R+ → R. The proposed
network architecture has two components: intra-voxel layers
and inter-voxel layers. The intra-voxel layers extract features
from each voxels, while the inter-voxel layers use dilated
convolution to capture the interaction between extracted
features. In our application in the next section we extract
a sequence of voxels lying along a nerve fiber bundle in
the brain known to be affected in Parkinson disease. Hence
we have a sequence of functions along the fiber bundle
{fi : S2 ×R+ → R}, making the application of the dilated
VolterraNet in section 6.2 appropriate.

7.5.1 Extracting intra-voxel features

We extract intra-voxel features (independently) from each
voxel. As mentioned before, in each voxel we have a function

f : S2 ×R+ → R. Since S2 ×R+ is a Riemannian homoge-
neous space (endowed with the product metric), we will use a
cascade of the Volterra correlation layers defined earlier (with
standard non-linearity between layers) to extract features
which are equivariant to the action of SO(3) × (R \ {0}).
These features are extracted independently within each voxel.
Observe that this equivariance property is natural in the
context of dMRI data. Since in each voxel of the dMRI data,
the signal is acquired in different directions (in 3D), we want
the features to be equivariant to the 3D rotations and scaling.

7.5.2 Extracting inter-voxel features
After the extraction of the intra-voxel features (which are
equivariant to the action of G), we seek to derive features
based on the interactions between the voxels. Here we use
the standard dilated convolution (as described in 6.1) layers
to capture the interaction between features extracted from
voxels.

Now, we are ready to give the details of the data used
for the experiment of our proposed Dilated-VolterraNet. For
this experiment, we used a second order Dilated-VolterraNet
with 3 dilated layers of kernel size (5×5) and dilation factors
of 1, 2 and 4 respectively.

7.6 Dilated VolterraNet Experiment: Group testing on
movement disorder patients

This dMRI data was collected from 50 PD patients and
44 controls at the University of Florida and are accessi-
ble via request from the NIH-NINDS Parkinson’s Disease
Biomarker Program portal https://pdbp.ninds.nih.gov/. All
images were collected using a 3.0 T MR scanner (Philips
Achieva) and 32-channel quadrature volume head coil. The
parameters of the diffusion imaging acquisition sequence
were as follows: gradient directions = 64, b-values = 0/1000
s/mm2, repetition time =7748 ms, echo time = 86 ms, flip
angle = 90◦, field of view = 224 × 224 mm, matrix size
= 112 × 112, number of contiguous axial slices = 60, slice
thickness = 2 mm. Eddy current correction was applied to
each data set by using standard motion correction techniques.

Fig. 6. M1 Template [39]

We first extracted the sen-
sory motor area tracts called
M1 fiber tracts (as shown in
Fig.6) using the FSL software
[40] from both the left (‘LM1’)
and right hemispheres (‘RM1’).
We applied the Dilated-Volterra
to the raw signal measure-
ments along the fiber tracts. Our

https://pdbp.ninds.nih.gov/
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CorrS
2

CorrSO(3) p-val.
‘LM1’ ‘RM1’

N N 0.01 0.02
Y N 0.04 0.03
N Y 0.13 0.24
Y Y 0.15 0.26

TABLE 5
Ablation studies for Dilated-VolterraNet

model was trained on both the control (normal subjects)
group and the PD group data sets, i.e., we learned two
Dilated VolterraNet models, one each for the control and
the PD groups respectively. Using the method from [41] we
compute the distance between these two models, denoted
by d. Now we permute the class labels between the classes,
retrain two models and compute the network distance dj .
If there are significant differences between the classes we
should expect that d > dj . We repeat this experiment for
j = 1, . . . , 1000 and let p be the proportion of experiments
for which d ≤ dj . This is a permutation test of the null
hypothesis: there is no significant difference between the
tract models learned from the two different classes. We also
performed ablation studies with regards to the order of the
model in the Dilated-VolterraNet to study the effect of higher
order convolutions. We used the following architecture
CorrS

2

2 → BN → ReLU → CorrSO(3)
2 → BN → ReLU

as our baseline model and then replaced CorrSO(3)
2 and

CorrS
2

2 to CorrSO(3) and CorrS
2

respectively in an alternating
fashion. The ablation study result is presented in Table 5. The
‘N’ in CorrSO(3) (CorrS

2

) indicates that we used second order
for the respective convolution operator. The table shows that
a second order representation in later layers is very useful
and hence a model with CorrSO(3) performs poorly but a
model with CorrS

2

and CorrSO(3)
2 performs as good as the

model with both second order kernels. Both models reject
the null hypothesis with 95% confidence.

We compared our dilated VolterraNet with the standard
(no dilation) VoletrraNet and as expected we needed ≈ 1.5×
parameters in case of standard VolterraNet to achieve p-
values of 0.03 and 0.04 for LM1 and RM1 respectively,
which is similar in performance to its dilated counterpart.
Additionally, we compared our network’s performance to
the performance of a similar dMRI architecture (recurrent
model) namely, the SPD-SRU [39] and the baseline model
used for comparison in [39] (see section 5.2 of [39] for details
on the baseline model). We found that the baseline method
yielded a p-value of 0.17 and 0.34 respectively for ’LM1’ and
’RM1’. Whereas, the SPD-SRU architecture yielded a p-values
of 0.01 and 0.032 respectively. We can conclude that both
using standard and Dialted VolterraNet we can reject the null
hypothesis with 95% confidence whereas Dilated VoletrraNet
can achieve the statistically significant result with ≈ 33%
reduction in number of parameters compared to its standard
counterpart.

8 CONCLUSIONS

In this paper, we presented a novel generalization of CNNs
to non-Euclidean domains specifically, Riemannian homoge-
neous spaces. More precisely, we introduced higher order
convolutions – represented using a Volterra series – on
Riemannian homogeneous spaces. We call our network a

Volterra homogeneous CNN abbreviated as VolterraNet.
The salient contributions of our work are: (i) A proof of
equivariance of higher order convolutions to group actions
on homogeneous Riemannian manifolds. Proofs of gener-
alized Linear Shift Invariant (equivariant) and Nonlinear
Shift Invariant (eqivariant) theorems for correlations and
Volterra series defined on Riemannian homogeneous spaces.
(ii) We prove that second order Volterra convolutions can
be expressed as a cascade of convolutions. This allows
for efficient implementation of second-order Volterra rep-
resentation used in the VolterraNet. (iii) In support of
our conjecture on the reduced number of parameters, real
data experiments empirically demonstrate that VolterraNet
requires less number of parameters to achieve the baseline
accuracy of classification in comparison to both Spherical-
CNN and Clebsch-Gordan net. (iv) We also presented a
dilated VolterraNet that was shown to be effective on a group
testing experiment on movement disorder patients. Our
future work will be focused on performing more real data
experiments to demonstrate the power of VolterraNet for a
variety of data domains that are Riemannian homogeneous
spaces.

ACKNOWLEDGEMENTS

This research was in part funded by the NSF grant IIS-
1724174 to BCV. We thank Professor David Vaillancourt of
the University of Florida, Department of Applied Physiology
and Kinesiology for providing us with the diffusion MRI
scans used in this work.

REFERENCES

[1] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[2] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Tech. Report, University of Toronto, Tech. Rep.,
2009.

[3] V. Volterra, Theory of functionals and of integral and integro-differential
equations. Courier Corporation, 2005.

[4] E. Worrall, J. Garbin, D. Turmukhambetov, and J. Brostow, “Har-
monic networks: Deep translation and rotation equivariance,” in
Proceedings of the IEEE CVPR. IEEE, 2017, pp. 5026–5037.

[5] T. Cohen, M. Geiger, J. Koehler, and M. Welling, “Spherical CNNs,”
in Proceedings of ICLR. JMLR, 2018.

[6] ——, “Convolutional networks for spherical signals,” in Proceedings
of ICML. JMLR, 2017.

[7] C. Esteves, C. Allen-Blanchette, A. Makadia, and K. Daniilidis,
“Learning so (3) equivariant representations with spherical cnns,”
in Proceedings of the European Conference on Computer Vision (ECCV),
2018, pp. 52–68.

[8] R. Kondor, Z. Lin, and S. Trivedi, “Clebsch-gordan nets: a fully
fourier space spherical convolutional neural network,” arXiv
preprint arXiv:1806.09231, 2018.

[9] C. Esteves, C. Allen-Blanchette, X. Zhou, and K. Daniilidis, “Polar
transformer networks,” arXiv preprint arXiv:1709.01889, 2017.

[10] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in neural information processing systems
(NIPS), 2015, pp. 2017–2025.

[11] R. Kondor and S. Trivedi, “On the generalization of equivariance
and convolution in neural networks to the action of compact
groups,” arXiv preprint arXiv:1802.03690, 2018.

[12] T. Cohen, M. Geiger, and M. Weiler, “A general theory of equivari-
ant cnns on homogeneous spaces,” arXiv preprint arXiv:1811.02017,
2018.

[13] J. R. Driscoll and D. M. Healy, “Computing fourier transforms
and convolutions on the 2-sphere,” Advances in applied mathematics,
vol. 15, no. 2, pp. 202–250, 1994.



SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. XXX, NO. XXX, MONTH YEAR 11

[14] R. Kumar, A. Banerjee, and B. C. Vemuri, “Volterrafaces: Discrimi-
nant analysis using volterra kernels,” 2009.

[15] R. Kumar, A. Banerjee, B. C. Vemuri, and H. Pfister, “Trainable
convolution filters and their application to face recognition,” IEEE
transactions on pattern analysis and machine intelligence, vol. 34, no. 7,
pp. 1423–1436, 2012.

[16] N. Hakim, J. Kaufman, G. Cerf, and H. Meadows, “Volterra
characterization of neural networks,” in Signals, Systems and
Computers, 1991. 1991 Conference Record of the Twenty-Fifth Asilomar
Conference on. IEEE, 1991, pp. 1128–1132.

[17] G. Zoumpourlis, A. Doumanoglou, N. Vretos, and P. Daras, “Non-
linear convolution filters for cnn-based learning,” in Computer
Vision (ICCV), 2017 IEEE International Conference on. IEEE, 2017,
pp. 4771–4779.

[18] S. Helgason, Differential geometry and symmetric spaces. Academic
press, 1962, vol. 12.

[19] M. Banerjee, R. Chakraborty, D. Archer, D. Vaillancourt, and B. C.
Vemuri, “Dmr-cnn: A cnn tailored for dmr scans with applications
to pd classification,” in 2019 IEEE 16th International Symposium on
Biomedical Imaging (ISBI 2019). IEEE, 2019, pp. 388–391.

[20] D. S. Dummit and R. M. Foote, Abstract algebra. Wiley Hoboken,
2004, vol. 3.

[21] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis: Volume I Struc-
ture of Topological Groups Integration Theory Group Representations.
Springer Science & Business Media, 2012, vol. 115.

[22] P. W. Michor, Topics in differential geometry. American Mathematical
Soc., 2008, vol. 93.

[23] W. Hackbusch and B. N. Khoromskij, “Tensor-product approxi-
mation to operators and functions in high dimensions,” Journal of
Complexity, vol. 23, no. 4-6, pp. 697–714, 2007.

[24] J. L. Elman, “Finding structure in time,” Cognitive science, vol. 14,
no. 2, pp. 179–211, 1990.

[25] S. Bai, J. Z. Kolter, and V. Koltun, “Convolutional sequence
modeling revisited,” 2018.

[26] W. R. Hamilton, Elements of quaternions. Longmans, Green, &
Company, 1866.

[27] G. Kurz, F. Pfaff, and U. D. Hanebeck, “Discretization of so (3)
using recursive tesseract subdivision,” in 2017 IEEE International
Conference on Multisensor Fusion and Integration for Intelligent Systems
(MFI). IEEE, 2017, pp. 49–55.

[28] G. Cheng and B. C. Vemuri, “A novel dynamic system in the space
of spd matrices with applications to appearance tracking,” SIAM
journal on imaging sciences, vol. 6, no. 1, pp. 592–615, 2013.

[29] D. Kinga and J. B. Adam, “A method for stochastic optimization,”
in International Conference on Learning Representations (ICLR), vol. 5,
2015.

[30] L. Yi, L. Shao, M. Savva, H. Huang, Y. Zhou, Q. Wang, B. Graham,
M. Engelcke, R. Klokov, V. Lempitsky et al., “Large-scale 3d shape
reconstruction and segmentation from shapenet core55,” arXiv
preprint arXiv:1710.06104, 2017.

[31] A. Tatsuma and M. Aono, “Multi-fourier spectra descriptor and
augmentation with spectral clustering for 3d shape retrieval,” The
Visual Computer, vol. 25, no. 8, pp. 785–804, 2009.

[32] T. Furuya and R. Ohbuchi, “Deep aggregation of local 3d geometric
features for 3d model retrieval.” in BMVC, 2016, pp. 121–1.

[33] C. R. Qi, H. Su, M. Nießner, A. Dai, M. Yan, and L. J. Guibas,
“Volumetric and multi-view cnns for object classification on 3d
data,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2016, pp. 5648–5656.

[34] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 815–823.

[35] L. C. Blum and J.-L. Reymond, “970 million druglike small
molecules for virtual screening in the chemical universe database
gdb-13,” Journal of the American Chemical Society, vol. 131, no. 25,
pp. 8732–8733, 2009.

[36] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. Von Lilienfeld,
“Fast and accurate modeling of molecular atomization energies with
machine learning,” Physical review letters, vol. 108, no. 5, p. 058301,
2012.

[37] G. Montavon, K. Hansen, S. Fazli, M. Rupp, F. Biegler, A. Ziehe,
A. Tkatchenko, A. V. Lilienfeld, and K.-R. Müller, “Learning
invariant representations of molecules for atomization energy
prediction,” in Advances in Neural Information Processing Systems,
2012, pp. 440–448.

[38] A. Raj, A. Kumar, Y. Mroueh, P. T. Fletcher, and B. Schölkopf,
“Local group invariant representations via orbit embeddings,” arXiv
preprint arXiv:1612.01988, 2016.

[39] R. Chakraborty, C.-H. Yang, X. Zhen, M. Banerjee, D. Archer,
D. Vaillancourt, V. Singh, and B. C. Vemuri, “Statistical recurrent
models on manifold valued data,” ArXiv e-prints, 2018.

[40] D. B. Archer, D. E. Vaillancourt, and S. A. Coombes, “A template
and probabilistic atlas of the human sensorimotor tracts using
diffusion mri,” Cerebral Cortex, vol. 28, no. 5, pp. 1685–1699, 2017.

[41] U. Triacca, “Measuring the distance between sets of ARMA models,”
Econometrics, vol. 4, no. 3, p. 32, 2016.

Monami Banerjee received her Ph.D. in com-
puter science from the Univ. of Florida in 2018.
She is currently a research staff member at Face-
book Oculus, Menlo Park. Her research interests
lie at the intersection of Geometry, Computer
Vision and Medical Image Anlaysis.

Rudrasis Chakraborty received his Ph.D. in
computer science from the Univ. of Florida in
2018. He is currently a post doctoral researcher
at UC Berkeley. His research interests lie in
the intersection of Geometry, ML and Computer
Vision.

Jose Bouza is a fourth year Mathematics and
Computer Science undergraduate at the Univer-
sity of Florida. His primary interests encompass
computer vision and applied topology.

Baba C. Vemuri received his PhD in Electrical
and Computer Engineering from the University of
Texas at Austin. Currently, he holds the Wilson
and Marie Collins professorship in Engineering
at the University of Florida and is a full professor
in the Department of Computer and Information
Sciences and Engineering. His research interests
include Statistical Analysis of Manifold-valued
Data, Medical Image Computing, Computer Vi-
sion and Machine Learning. He is a recipient of
the IEEE Technical Achievement Award (2017)

and is a Fellow of the IEEE (2001) and the ACM (2009).


	Introduction
	List of Notations
	Correlation on Riemannian homogeneous spaces
	Background
	Assumptions

	Euclidean LSI Theorem
	Generalizing Convolutions and the LSI Theorem to Riemannian homogeneous spaces
	Basis functions for L2-functions on homogeneous spaces
	Basis on L2(M, R) induced from L2(G, R)


	Higher order correlation on Riemannian homogeneous spaces
	Volterra Series on Homogenous Spaces
	Efficient Computation of the Second-Order Volterra Kernel

	Architecture
	Correlation on homogeneous spaces
	Volterra on homogeneous spaces
	Other Layers

	Dilated VolterraNet
	Euclidean Dilated Convolution:
	Dilated VolterraNet

	Experiments
	Synthetic Data Experiment: Classification of data on P3
	Spherical MNIST Data Experiment
	3D Shape Recognition Experiment
	Regression Experiment: Prediction of Atomic Energy
	Network architecture for dMRI data Using Dilated VolterraNet
	Extracting intra-voxel features
	Extracting inter-voxel features

	Dilated VolterraNet Experiment: Group testing on movement disorder patients

	Conclusions
	References
	Biographies
	Monami Banerjee
	Rudrasis Chakraborty
	Jose Bouza
	Baba C. Vemuri


